Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes

We present a planar surface-code-based scheme for fault-tolerant quantum computation which eliminates the time overhead of single-qubit Clifford gates, and implements long-range multi-target CNOT gates with a time overhead that scales only logarithmically with the control-target separation. This is done by replacing hardware operations for single-qubit Clifford gates with a classical tracking protocol. Inter-qubit communication is added via a modified lattice surgery protocol that employs twist defects of the surface code. The long-range multi-target CNOT gates facilitate magic state distillation, which renders our scheme fault-tolerant and universal.

[1]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[2]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[3]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[4]  Y. Oreg,et al.  Majorana zero modes in superconductor–semiconductor heterostructures , 2017, Nature Reviews Materials.

[5]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[6]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[7]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[8]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[9]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[10]  Daniel Litinski,et al.  Braiding by Majorana tracking and long-range CNOT gates with color codes , 2017, 1708.05012.

[11]  Jens Eisert,et al.  Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks , 2017, 1704.01589.

[12]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[13]  Benjamin J. Brown,et al.  Poking holes and cutting corners to achieve Clifford gates with the surface code , 2016, 1609.04673.

[14]  Earl T. Campbell,et al.  The Steep Road Towards Robust and Universal Quantum Computation , 2016 .

[15]  Isaac H. Kim,et al.  The surface code with a twist , 2016, 1612.04795.

[16]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[17]  M. Freedman,et al.  Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.

[18]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[19]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[20]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[21]  Charles M. Marcus,et al.  Realizing Majorana zero modes in superconductor-semiconductor heterostructures , 2018 .

[22]  Helmut G. Katzgraber,et al.  Error tolerance of topological codes with independent bit-flip and measurement errors , 2016, 1603.08729.

[23]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[24]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[25]  Matthew B. Hastings,et al.  Reduced space-time and time costs Ising dislocation codes and arbitrary ancillas , 2014, Quantum Inf. Comput..

[26]  H. Bombin,et al.  Topological order with a twist: Ising anyons from an Abelian model. , 2010, Physical review letters.

[27]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[29]  Austin G. Fowler,et al.  Threshold error rates for the toric and planar codes , 2010, Quantum Inf. Comput..