A New Upper Bound for Separating Words

We prove that for any distinct $x,y \in \{0,1\}^n$, there is a deterministic finite automaton with $\widetilde{O}(n^{1/3})$ states that accepts $x$ but not $y$. This improves Robson's 1989 upper bound of $\widetilde{O}(n^{2/5})$.

[1]  John Michael Robson Separating Strings with Small Automata , 1989, Inf. Process. Lett..

[2]  V. Koubek,et al.  On Discerning Words by Automata , 1986, ICALP.

[3]  Alex D. Scott,et al.  Reconstructing sequences , 1997, Discret. Math..

[4]  M. N. Vyalyi,et al.  Separating words by occurrences of subwords , 2014 .