Co-evolution of vacancies and solute clusters during artificial ageing of Al-Mg-Si alloys

[1]  B. Gault,et al.  Metrology of small particles and solute clusters by atom probe tomography , 2019, Acta Materialia.

[2]  P. Korzhavyi,et al.  Effective cluster interactions and pre–precipitate morphology in binary Al-based alloys , 2019, Acta Materialia.

[3]  J. Banhart,et al.  Effect of pre-ageing on natural secondary ageing and paint bake hardening in Al–Mg–Si alloys , 2019, Materialia.

[4]  R. Würschum,et al.  High-precision isothermal dilatometry as tool for quantitative analysis of precipitation kinetics: case study of dilute Al alloy , 2018, Journal of Materials Science.

[5]  J. Banhart,et al.  Reversion of natural ageing in Al-Mg-Si alloys , 2018, Acta Materialia.

[6]  R. Würschum,et al.  Quantitative volumetric identification of precipitates in dilute alloys using high-precision isothermal dilatometry , 2018, Philosophical Magazine Letters.

[7]  K. Matsuda,et al.  Atomic Structures of Precipitates in Al–Mg–Si Alloys with Small Additions of Other Elements , 2018 .

[8]  G. Klinser,et al.  Precipitation processes in Al–Mg–Si extending down to initial clustering revealed by the complementary techniques of positron lifetime spectroscopy and dilatometry , 2018, Journal of Materials Science.

[9]  G. Klinser,et al.  Diffusion-reaction model for positron trapping and annihilation at spherical extended defects and in precipitate-matrix composites , 2018, Physical Review B.

[10]  Ryo Kobayashi,et al.  Neural network potential for Al-Mg-Si alloys , 2017 .

[11]  Z. Chen,et al.  Low-alloy-correlated reversal of the precipitation sequence in Al-Mg-Si alloys , 2017 .

[12]  J. Banhart,et al.  Effect of Cu and Ge on solute clustering in Al–Mg–Si alloys , 2016 .

[13]  W. Curtin,et al.  Microalloying for the controllable delay of precipitate formation in metal alloys , 2016 .

[14]  J. Banhart,et al.  Early stages of solute clustering in an Al-Mg-Si alloy , 2015 .

[15]  B. Klobes,et al.  Early stage ageing effects and shallow positron traps in Al–Mg–Si alloys , 2015 .

[16]  Meng Liu Clustering kinetics in Al-Mg-Si alloys investigated by positron annihilation techniques , 2014 .

[17]  N. Provatas,et al.  Atomic-scale pathway of early-stage precipitation in Al–Mg–Si alloys , 2014, 1407.6412.

[18]  P. Uggowitzer,et al.  Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys. , 2014, Physical review letters.

[19]  E. Kozeschnik,et al.  The Life-Time of Structural Vacancies in the Presence of Solute Trapping , 2014 .

[20]  Matthew D. H. Lay,et al.  Vacancy Behavior and Solute Cluster Growth During Natural Aging of an Al-Mg-Si Alloy , 2012, Metallurgical and Materials Transactions A.

[21]  J. Banhart,et al.  The kinetics of clustering in Al–Mg–Si alloys studied by Monte Carlo simulation , 2012 .

[22]  E. Kozeschnik,et al.  Precipitation in Al-Alloy 6016 – The Role of Excess Vacancies , 2012 .

[23]  P. Uggowitzer,et al.  Mechanisms controlling the artificial aging of Al-Mg-Si Alloys , 2011 .

[24]  E. Kozeschnik,et al.  Modeling of excess vacancy annihilation at different types of sinks , 2011 .

[25]  J. Banhart,et al.  Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy , 2010, 1006.4778.

[26]  S. Ringer,et al.  Solute clustering in Al–Cu–Mg alloys during the early stages of elevated temperature ageing , 2010 .

[27]  Matthew D. H. Lay,et al.  Natural Aging in Al‐Mg‐Si Alloys – A Process of Unexpected Complexity , 2010 .

[28]  H. Zurob,et al.  A model for the growth of solute clusters based on vacancy trapping , 2009 .

[29]  Xiaolan Wei,et al.  High‐temperature thermal stability of molten salt materials , 2008 .

[30]  C. Wolverton Solute–vacancy binding in aluminum , 2007 .

[31]  M. V. van Huis,et al.  Atomic Pillar-Based Nanoprecipitates Strengthen AlMgSi Alloys , 2006, Science.

[32]  J. Kuriplach,et al.  Vacancy-solute complexes in aluminum , 2006 .

[33]  E. Zschech,et al.  Study of artificial aging in AlMgSi (6061) and AlMgSiCu (6013) alloys by Positron Annihilation , 2006 .

[34]  I. Procházka,et al.  The asset of ultra-fast digitizers for positron-lifetime spectroscopy , 2005 .

[35]  B. Muddle,et al.  Characterisation of Precipitation Hardening Response and As-Quenched Microstructures in Al-Mg(-Ag) Alloys , 2004 .

[36]  A. Khellaf,et al.  Quenching studies of lattice vacancies in high-purity aluminium , 2002 .

[37]  H. W. Zandbergen,et al.  Atomic model for GP-zones in a 6082 Al–Mg–Si system , 2001 .

[38]  R. Krause-Rehberg,et al.  Positron Annihilation in Semiconductors , 1999 .

[39]  H. W. Zandbergen,et al.  The crystal structure of the β′ phase in Al–Mg–Si alloys , 1998 .

[40]  H. Schaefer,et al.  Positron Lifetime Spectroscopy and Trapping at Vacancies in Aluminium , 1987 .

[41]  R. Nieminen,et al.  CORRIGENDUM: Defect spectroscopy with positrons: a general calculational method , 1983 .

[42]  R. P. Gupta,et al.  Positron lifetime in vacancy-impurity complexes , 1981 .

[43]  B. McKee,et al.  Some systematics of positron-vacancy interactions in metals , 1978 .

[44]  H. Kimura,et al.  Behavior of excess vacancies during the nucleation of precipitates in aluminum-silicon alloys , 1971 .

[45]  F. Fickett Aluminum—1. A review of resistive mechanisms in aluminum , 1971 .

[46]  H. Kimura,et al.  Excess Vacancies and the Nucleation of Precipitates in Aluminum-Silicon Alloys , 1970 .

[47]  Y. Fukai Electrical resistivity due to vacancies in aluminium , 1969 .

[48]  H. Herman,et al.  A model for the growth of Guinier-Preston zones-the vacancy pump , 1965 .

[49]  K. H. Westmacott,et al.  Dislocation loops in quenched aluminium , 1958 .