A constraint handling technique for constrained multi-objective genetic algorithm

Abstract A new constraint handling technique for multi-objective genetic algorithm is proposed in this paper. There are two important issues in multi-objective genetic algorithm, closeness of the obtained solutions to the real Pareto frontier and diversity of the obtained solutions. If considering a constrained multi-objective programming problem, one needs to take account of feasibility of solutions. Thus, in this new constraint handling technique, we systematically take closeness, diversity and feasibility as three objectives in a multi-objective subproblem. And solutions in each iteration are sorted by optimal sequence method based on those three objectives. Then, the solutions inherited to the next generation are selected based on its optimal order. Numerical tests show that the solutions obtained by this method are not only feasible, but also close to the real Pareto front and have good diversity.

[1]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[3]  Chun Chen,et al.  Multiple trajectory search for unconstrained/constrained multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[4]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[6]  H. Kitano Neurogenetic learning: an integrated method of designing and training neural networks using genetic algorithms , 1994 .

[7]  Gary G. Yen,et al.  Constraint Handling in Multiobjective Evolutionary Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[8]  Douglas H. Norrie,et al.  Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey , 1999, Knowledge and Information Systems.

[9]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[10]  Carlos A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[11]  Oscar Castillo,et al.  Multiple Objective Genetic Algorithms for Path-planning Optimization in Autonomous Mobile Robots , 2006, Soft Comput..

[12]  Mehmet Kaya,et al.  Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules , 2006, Soft Comput..

[13]  Gary G. Yen,et al.  Constraint handling in multi-objective evolutionary optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[14]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms , 1993 .

[15]  Kaisa Miettinen,et al.  A new hybrid mutation operator for multiobjective optimization with differential evolution , 2011, Soft Comput..

[16]  Pavol Bauer,et al.  Improved genetic algorithm inspired by biological evolution , 2007, Soft Comput..

[17]  Enrique Alba,et al.  Multi-Objective Optimization using Grid Computing , 2007, Soft Comput..

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Gary G. Yen,et al.  Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation , 2003, IEEE Trans. Evol. Comput..

[20]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[21]  Jouni Lampinen,et al.  Performance assessment of Generalized Differential Evolution 3 (GDE3) with a given set of problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[22]  P. Suganthan,et al.  Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods , 2011 .

[23]  Qingfu Zhang,et al.  Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[24]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[25]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[26]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[27]  H. Ishibuchi,et al.  MOGA: multi-objective genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[28]  David E. Goldberg,et al.  A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing , 1990, Complex Syst..

[29]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[30]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[31]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[32]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[33]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[34]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[35]  Gary G. Yen,et al.  Rank-density-based multiobjective genetic algorithm and benchmark test function study , 2003, IEEE Trans. Evol. Comput..

[36]  H. Ishibuchi,et al.  Multi-objective genetic algorithm and its applications to flowshop scheduling , 1996 .

[37]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[38]  Hai-Lin,et al.  The multiobjective evolutionary algorithm based on determined weight and sub-regional search , 2009, 2009 IEEE Congress on Evolutionary Computation.

[39]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[40]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[41]  Zhijian Wu,et al.  Performance assessment of DMOEA-DD with CEC 2009 MOEA competition test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[42]  Kalyanmoy Deb,et al.  Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[43]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[44]  Kaveh Amouzgar,et al.  Multi-objective optimization using Genetic Algorithms , 2012 .

[45]  José L. Verdegay,et al.  Evolutionary Techniques for Constrained Optimization Problems , 1999 .

[46]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[47]  Janez Brest,et al.  Differential Evolution with Self-adaptation and Local Search for Constrained Multiobjective Optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[48]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[49]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[50]  DebKalyanmoy Multi-objective genetic algorithms , 1999 .