Water-stable polymer hole transport layer in organic and perovskite light-emitting diodes

[1]  Jong Hyun Park,et al.  Uniform and Large‐Area Cesium‐Based Quasi‐2D Perovskite Light‐Emitting Diodes Using Hot‐Casting Method , 2020, Advanced Materials Interfaces.

[2]  C. Varlikli,et al.  Dispersion stability of amine modified graphene oxides and their utilization in solution processed blue OLED , 2020 .

[3]  M. Soliman,et al.  Thermal oxidation of sputtered nickel nano-film as hole transport layer for high performance perovskite solar cells , 2019, Journal of Materials Science: Materials in Electronics.

[4]  Su Seok Choi,et al.  Conjugated Polyelectrolytes as Multifunctional Passivating and Hole‐Transporting Layers for Efficient Perovskite Light‐Emitting Diodes , 2019, Advanced materials.

[5]  M. Fung,et al.  Interfacial engineering for highly efficient quasi-two dimensional organic–inorganic hybrid perovskite light-emitting diodes , 2019, Journal of Materials Chemistry C.

[6]  Christoph Wolf,et al.  Efficient Perovskite Light‐Emitting Diodes Using Polycrystalline Core–Shell‐Mimicked Nanograins , 2019, Advanced Functional Materials.

[7]  T. Hayat,et al.  Achieving Balanced Charge Injection of Blue Quantum Dot Light-Emitting Diodes through Transport Layer Doping Strategies. , 2019, The journal of physical chemistry letters.

[8]  R. Friend,et al.  Control of Interface Defects for Efficient and Stable Quasi‐2D Perovskite Light‐Emitting Diodes Using Nickel Oxide Hole Injection Layer , 2018, Advanced science.

[9]  J. Kido,et al.  Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices , 2018, Nature Photonics.

[10]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[11]  A. Nakayama,et al.  Highly Efficient Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes with Fully Solution-Processed Organic Multilayered Architecture: Impact of Terminal Substitution on Carbazole-Benzophenone Dendrimer and Interfacial Engineering. , 2018, ACS applied materials & interfaces.

[12]  Shinuk Cho,et al.  Water-resistant PEDOT:PSS hole transport layers by incorporating a photo-crosslinking agent for high-performance perovskite and polymer solar cells. , 2018, Nanoscale.

[13]  R. Friend,et al.  Conjugated Polyelectrolytes as Efficient Hole Transport Layers in Perovskite Light-Emitting Diodes. , 2018, ACS nano.

[14]  Peng Gao,et al.  High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes , 2018, 1804.09785.

[15]  J. Cho,et al.  Lead-Free Perovskite Nanocrystals for Light-Emitting Devices. , 2018, The journal of physical chemistry letters.

[16]  Ping Chen,et al.  Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles , 2018, Nanotechnology.

[17]  T. Hayat,et al.  Optical-Electrical-Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[18]  T. Hayat,et al.  Efficient and Stable Pure Green All-Inorganic Perovskite CsPbBr3 Light-Emitting Diodes with a Solution-Processed NiOx Interlayer , 2017 .

[19]  S. H. Kim,et al.  Structural and Morphological Evolution for Water-resistant Organic Thermoelectrics , 2017, Scientific Reports.

[20]  X. W. Sun,et al.  Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering , 2017 .

[21]  Jong-Man Kim,et al.  Polymerizable Supramolecular Approach to Highly Conductive PEDOT:PSS Patterns. , 2017, ACS applied materials & interfaces.

[22]  J. Yao,et al.  High-Performance Solution-Processed Single-Junction Polymer Solar Cell Achievable by Post-Treatment of PEDOT:PSS Layer with Water-Containing Methanol. , 2017, ACS applied materials & interfaces.

[23]  Q. Gong,et al.  Charge Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells Based on Interface Engineering , 2016, 2016 Asia Communications and Photonics Conference (ACP).

[24]  T. Wen,et al.  NiOx Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite‐Based Light‐Emitting Diodes , 2016, Advanced materials.

[25]  Huakang Yu,et al.  High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. , 2016, ACS nano.

[26]  Jinsong Huang,et al.  Thin Insulating Tunneling Contacts for Efficient and Water‐Resistant Perovskite Solar Cells , 2016, Advanced materials.

[27]  Qibing Pei,et al.  Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. , 2015, ACS applied materials & interfaces.

[28]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[29]  Seung-Hwan Lee,et al.  Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT:PSS grafted with a PEGME buffer layer , 2015 .

[30]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[31]  Zhiwei Li,et al.  Stable Perovskite Solar Cells Based on WO3 Nanocrystals as Hole Transport Layer , 2015 .

[32]  Chang-Qi Ma,et al.  Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells. , 2015, ACS applied materials & interfaces.

[33]  Min-Soo Choi,et al.  Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers , 2015 .

[34]  Yang Yang,et al.  Moisture assisted perovskite film growth for high performance solar cells , 2014 .

[35]  Miguel A. Esteruelas,et al.  CCC–Pincer–NHC Osmium Complexes: New Types of Blue-Green Emissive Neutral Compounds for Organic Light-Emitting Devices (OLEDs) , 2014 .

[36]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[37]  Yiwang Chen,et al.  Universal and Versatile MoO3-Based Hole Transport Layers for Efficient and Stable Polymer Solar Cells , 2014 .

[38]  H. Du,et al.  Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers. , 2014, ACS applied materials & interfaces.

[39]  Seeram Ramakrishna,et al.  Enhancing the stability of polymer solar cells by improving the conductivity of the nanostructured MoO3 hole-transport layer. , 2013, Physical chemistry chemical physics : PCCP.

[40]  R. Moubah,et al.  Solution-processable graphene oxide as an efficient hole injection layer for high luminance organic light-emitting diodes , 2013, 1401.4427.

[41]  W. Choi,et al.  Emissive ZnO-graphene quantum dots for white-light-emitting diodes. , 2012, Nature nanotechnology.

[42]  Jin Young Kim,et al.  Highly efficient polymer light-emitting diodes using graphene oxide as a hole transport layer. , 2012, ACS nano.

[43]  Seok‐In Na,et al.  Solution‐Processable Reduced Graphene Oxide as a Novel Alternative to PEDOT:PSS Hole Transport Layers for Highly Efficient and Stable Polymer Solar Cells , 2011, Advanced materials.

[44]  Shui-Tong Lee,et al.  Interfacial electronic structures of WO3-based intermediate connectors in tandem organic light-emitting diodes , 2010 .

[45]  K. Tu,et al.  Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. , 2010, ACS nano.

[46]  Ong Kian Soo,et al.  Surface-modified nanotube anodes for high performance organic light-emitting diode. , 2009, ACS nano.

[47]  J. Ohshita,et al.  Hole-injection properties of annealed polythiophene films to replace PEDOT-PSS in multilayered OLED systems , 2009 .

[48]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[49]  Young-Soo Kwon,et al.  White OLEDs based on novel emissive materials such as Zn(HPB)2 and Zn(HPB)q , 2007 .

[50]  D. Bradley,et al.  Degradation of organic solar cells due to air exposure , 2006 .

[51]  F. Huang,et al.  Synthesis of novel triphenylamine-based conjugated polyelectrolytes and their application as hole-transport layers in polymeric light-emitting diodes , 2006 .

[52]  Stephen R. Forrest,et al.  White Organic Light‐Emitting Devices for Solid‐State Lighting , 2004 .

[53]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[54]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[55]  Biwu Ma,et al.  Bright Light‐Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets , 2016, Advanced materials.

[56]  M. Notomi,et al.  Organic emissive materials and devices for photonic communication , 2004 .

[57]  A. Heeger,et al.  Flexible light-emitting diodes made from soluble conducting polymers , 1992, Nature.