Software Frameworks for Deep Learning at Scale
暂无分享,去创建一个
[1] Stephen J. Wright,et al. Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.
[2] Clément Farabet,et al. Torch7: A Matlab-like Environment for Machine Learning , 2011, NIPS 2011.
[3] Dumitru Erhan,et al. Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[4] Forrest N. Iandola,et al. FireCaffe: Near-Linear Acceleration of Deep Neural Network Training on Compute Clusters , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[5] Yu Zhang,et al. The Computational Network Toolkit [Best of the Web] , 2015, IEEE Signal Process. Mag..
[6] Razvan Pascanu,et al. Theano: A CPU and GPU Math Compiler in Python , 2010, SciPy.
[7] Gebräuchliche Fertigarzneimittel,et al. V , 1893, Therapielexikon Neurologie.
[8] Jürgen Schmidhuber,et al. Deep learning in neural networks: An overview , 2014, Neural Networks.
[9] Trevor Darrell,et al. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.
[10] Zheng Zhang,et al. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems , 2015, ArXiv.
[11] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[12] Trevor Darrell,et al. Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.
[13] Taghi M. Khoshgoftaar,et al. A survey of open source tools for machine learning with big data in the Hadoop ecosystem , 2015, Journal of Big Data.