Analysis of the linear sampling method for imaging penetrable obstacles in the time domain

We consider the problem of locating and reconstructing the geometry of a penetrable obstacle from time domain measurements of causal waves. More precisely, we assume that we are given the scattered field due to point sources placed on a surface enclosing the obstacle, and that the scattered field is measured on the same surface. From these multi-static scattering data we wish to determine the position and shape of the target. To deal with this inverse problem, we propose and analyze the Time Domain Linear Sampling Method (TDLSM) by means of localizing the interior transmission eigenvalues in the FourierLaplace domain. We also prove new time domain estimates for the forward problem and the interior transmission problem, as well as analyze several time domain operators arising in the inversion scheme.

[1]  Isabelle Terrasse,et al.  Resolution mathematique et numerique des equations de maxwell instationnaires par une methode de potentiels retardes , 1993 .

[2]  P. Monk,et al.  An inverse acoustic waveguide problem in the time domain , 2016 .

[3]  Qiang Chen,et al.  A sampling method for inverse scattering in the time domain , 2010 .

[4]  Peter Monk,et al.  Toward a time domain approach to the linear sampling method , 2013 .

[5]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[6]  Georgi Vodev,et al.  High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues , 2017, 1701.04668.

[7]  L. Evans,et al.  Partial Differential Equations , 1941 .

[8]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[9]  Houssem Haddar,et al.  An improved time domain linear sampling method for Robin and Neumann obstacles , 2014 .

[10]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[11]  Houssem Haddar,et al.  A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements , 2014 .

[12]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[13]  Fioralba Cakoni,et al.  A boundary integral equation method for the transmission eigenvalue problem , 2017 .

[14]  Bojan B. Guzina,et al.  On the multi-frequency obstacle reconstruction via the linear sampling method , 2010 .

[15]  T. Ha-Duong,et al.  On Retarded Potential Boundary Integral Equations and their Discretisation , 2003 .

[16]  Georgi Vodev,et al.  Transmission Eigenvalue-Free Regions , 2014, 1401.1627.

[17]  C. Lubich,et al.  On the multistep time discretization of linear\newline initial-boundary value problems and their boundary integral equations , 1994 .

[18]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[19]  Fioralba Cakoni,et al.  Inverse scattering theory and transmission eigenvalues , 2016 .

[20]  David Colton,et al.  Complex transmission eigenvalues for spherically stratified media , 2012 .

[21]  Georgi Vodev Parabolic transmission eigenvalue-free regions in the degenerate isotropic case , 2018, Asymptotic Analysis.