Anisotropic Goal-Oriented Mesh Adaptation for Time Dependent Problems

We present a new algorithm for combining an anisotropic goal-oriented error estimate with the mesh adaptation fixed point method for unsteady problems. The minimization of the error on a functional provides both the density and the anisotropy (stretching) of the optimal mesh. They are expressed in terms of state and adjoint. This method is used for specifying the mesh for a time sub-interval. A global fixed point iterates the re-evaluation of meshes and states over the whole time interval until convergence of the space-time mesh. Applications to unsteady blast-wave are presented.

[1]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[2]  Paul-Henry Cournède,et al.  Positivity statements for a mixed-element-volume scheme on fixed and moving grids , 2006 .

[3]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[4]  Frédéric Alauzet,et al.  Achievement of Global Second Order Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes , 2007 .

[5]  Frédéric Alauzet,et al.  High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..

[6]  Brett W. Clark,et al.  Proceedings of the 18th International Meshing Roundtable , 2009 .

[7]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[8]  Endre Süli,et al.  Acta Numerica 2002: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002 .

[9]  Frédéric Alauzet,et al.  High Order Sonic Boom Modeling by Adaptive Methods , 2009 .

[10]  Frédéric Alauzet,et al.  Extension of Metric-Based Anisotropic Mesh Adaptation to Time-Dependent Problems Involving Moving Geometries , 2011 .

[11]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..

[12]  Frédéric Hecht,et al.  Mesh adaption by metric control for multi-scale phenomena and turbulence , 1997 .

[13]  Paul-Louis George,et al.  3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations , 2007, J. Comput. Phys..

[14]  Michel Fortin,et al.  Anisotropic mesh adaptation - Towards a solver and user independent CFD , 1997 .

[15]  Pascal Frey,et al.  Transient fixed point‐based unstructured mesh adaptation , 2003 .

[16]  Mathias Wintzer,et al.  Adjoint-based adaptive mesh refinement for sonic boom prediction , 2008 .

[17]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[18]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part II: Validations and Applications , 2011, SIAM J. Numer. Anal..

[19]  M. Baines Moving finite elements , 1994 .

[20]  Rainald Löhner,et al.  Adaptive remeshing for transient problems , 1989 .

[21]  Frédéric Alauzet,et al.  Optimal 3D Highly Anisotropic Mesh Adaptation Based on the Continuous Mesh Framework , 2009, IMR.

[22]  Adrien Loseille,et al.  Anisotropic Adaptive Simulations in Aerodynamics , 2010 .

[23]  Pascal Frey,et al.  YAMS A fully Automatic Adaptive Isotropic Surface Remeshing Procedure , 2001 .

[24]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[25]  P. Frey Anisotropic surface remeshing , 2001 .