A Class of Multirate Infinitesimal GARK Methods

Differential equations arising in many practical applications are characterized by multiple time scales. Multirate time integration seeks to solve them efficiently by discretizing each scale with a different, appropriate time step, while ensuring the overall accuracy and stability of the numerical solution. In a seminal paper Knoth and Wolke (APNUM, 1998) proposed a hybrid solution approach: discretize the slow component with an explicit Runge-Kutta method, and advance the fast component via a modified fast differential equation. The idea led to the development of multirate infinitesimal step (MIS) methods by Wensch et al. (BIT, 2009.)Gunther and Sandu (BIT, 2016) explained MIS schemes as a particular case of multirate General-structure Additive Runge-Kutta (MR-GARK) methods. The hybrid approach offers extreme flexibility in the choice of the numerical solution process for the fast component. This work constructs a family of multirate infinitesimal GARK schemes (MRI-GARK) that extends the hybrid dynamics approachin multiple ways. Order conditions theory and stability analyses are developed, and practical explicit and implicit methods of up to order four are constructed. Numerical results confirm the theoretical findings. We expect the new MRI-GARK family to be most useful for systems of equations with widely disparate time scales, where the fast process is dispersive, and where the influence of the fast component on the slow dynamics is weak.

[1]  Emil M. Constantinescu,et al.  On Extrapolated Multirate Methods , 2010 .

[2]  Multirate Time Discretizations for Hyperbolic Partial Differential Equations , 2009 .

[3]  Emil M. Constantinescu,et al.  Multirate Timestepping Methods for Hyperbolic Conservation Laws , 2007, J. Sci. Comput..

[4]  Adrian Sandu,et al.  Extrapolated Multirate Methods for Differential Equations with Multiple Time Scales , 2013, J. Sci. Comput..

[5]  Q Ouyang,et al.  Pattern Formation by Interacting Chemical Fronts , 1993, Science.

[6]  Adrian Sandu,et al.  Multirate generalized additive Runge Kutta methods , 2016, Numerische Mathematik.

[7]  J. F. Andrus Stability of a multi-rate method for numerical integration of ODE's , 1993 .

[8]  David Broman,et al.  Co-Simulation , 2018, ACM Comput. Surv..

[9]  M. Günther,et al.  ROW methods adapted to electric circuit simulation packages , 1997 .

[10]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[11]  Andreas Bartel,et al.  A multirate W-method for electrical networks in state-space formulation , 2002 .

[12]  Anders Logg,et al.  Multi-Adaptive Galerkin Methods for ODEs I , 2002, SIAM J. Sci. Comput..

[13]  Martin Arnold,et al.  Multi-Rate Time Integration for Large Scale Multibody System Models , 2007 .

[14]  Oswald Knoth,et al.  Generalized Split-Explicit Runge–Kutta Methods for the Compressible Euler Equations , 2014 .

[15]  Mehmet Haluk Aksel,et al.  A GPU-accelerated adaptive discontinuous Galerkin method for level set equation , 2016 .

[16]  P. Rentrop,et al.  Multirate Partitioned Runge-Kutta Methods , 2001 .

[17]  Christian Lubich,et al.  Multirate extrapolation methods for differential equations with different time scales , 1997, Computing.

[18]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[19]  Jean-François Remacle,et al.  An efficient parallel implementation of explicit multirate Runge-Kutta schemes for discontinuous Galerkin computations , 2014, J. Comput. Phys..

[20]  P. Rentrop,et al.  Partitioning and Multirate Strategies in Latent Electric Circuits , 1994 .

[21]  C. W. Gear,et al.  Multirate linear multistep methods , 1984 .

[22]  Ralf Wolke,et al.  Numerical solution of multiscale problems in atmospheric modeling , 2012 .

[23]  John R. Rice,et al.  Split Runge-Kutta method for simultaneous equations , 1960 .

[24]  Ralf Wolke,et al.  Multirate Runge-Kutta schemes for advection equations , 2009 .

[25]  Ralf Wolke,et al.  Multirate Implicit‐Explicit Time Integration Schemes in Atmospheric Modelling , 2010 .

[26]  Ralf Wolke,et al.  Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows , 1998 .

[27]  Jean-François Remacle,et al.  Multirate time stepping for accelerating explicit discontinuous Galerkin computations with application to geophysical flows , 2013 .

[28]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[29]  Andreas Klöckner,et al.  Multi-rate time integration on overset meshes , 2018, J. Comput. Phys..

[30]  Chun-Jung Chen,et al.  The multi-rate Iterated Timing Analysis algorithm for circuit simulation , 2010, 2010 53rd IEEE International Midwest Symposium on Circuits and Systems.

[31]  Adrian Sandu,et al.  A Generalized-Structure Approach to Additive Runge-Kutta Methods , 2015, SIAM J. Numer. Anal..

[32]  M. Clemens,et al.  Local timestepping discontinuous Galerkin methods for electromagnetic RF field problems , 2009, 2009 3rd European Conference on Antennas and Propagation.

[33]  Ralf Wolke,et al.  Implementation of splitting methods for air pollution modeling , 2011 .

[34]  Toshiji Kato,et al.  Circuit Analysis by a New Multirate Method , 1997 .

[35]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[36]  Oswald Knoth,et al.  Multirate infinitesimal step methods for atmospheric flow simulation , 2009 .