On the second eigenvalue and random walks in randomd-regular graphs

AbstractThe main goal of this paper is to estimate the magnitude of the second largest eigenvalue in absolute value, λ2, of (the adjacency matrix of) a randomd-regular graph,G. In order to do so, we study the probability that a random walk on a random graph returns to its originating vertex at thek-th step, for various values ofk. Our main theorem about eigenvalues is that $$E|\lambda _2 (G)|^m \leqslant \left( {2\sqrt {2d - 1} \left( {1 + \frac{{\log d}}{{\sqrt {2d} }} + 0\left( {\frac{1}{{\sqrt d }}} \right)} \right) + 0\left( {\frac{{d^{3/2} \log \log n}}{{\log n}}} \right)} \right)^m $$ for any $$m \leqslant 2\left\lfloor {log n\left\lfloor {\sqrt {2d - } 1/2} \right\rfloor /\log d} \right\rfloor $$ , where E denotes the expected value over a certain probability space of 2d-regular graphs. It follows, for example, that for fixedd the second eigenvalue's magnitude is no more than $$2\sqrt {2d - 1} + 2\log d + C'$$ with probability 1−n−C for constantsC andC′ for sufficiently largen.