Elliptical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders

[1]  H. Feng,et al.  Nematic superconducting state in iron pnictide superconductors , 2017, Nature Communications.

[2]  Hua-bing Wang,et al.  Elliptical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders , 2017, 1709.04786.

[3]  Dung-Hai Lee,et al.  What makes the Tc of monolayer FeSe on SrTiO3 so high: a sign-problem-free quantum Monte Carlo study , 2015, Science bulletin.

[4]  C. Giorgio,et al.  Evolution of the superconducting properties in FeSe 1 − x S x , 2015 .

[5]  A. Tsukazaki,et al.  Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO , 2015, Nature Physics.

[6]  Q. Xue,et al.  Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. , 2015, Nature materials.

[7]  A. Schofield,et al.  Emergence of the nematic electronic state in FeSe , 2015, 1502.02917.

[8]  Dung-Hai Lee,et al.  Nematicity and quantum paramagnetism in FeSe , 2015, Nature Physics.

[9]  Zhongxian Zhao,et al.  Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors. , 2014, Journal of the American Chemical Society.

[10]  H. Löhneysen,et al.  Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe , 2014, 1407.1418.

[11]  R. Arita,et al.  Anomalous Fermi surface in FeSe seen by Shubnikov–de Haas oscillation measurements , 2014, 1405.7749.

[12]  K. Watanabe,et al.  Electric transport of a single-crystal iron chalcogenide FeSe superconductor: Evidence of symmetry-breakdown nematicity and additional ultrafast Dirac cone-like carriers , 2014, 1405.3815.

[13]  Takashi Takahashi,et al.  Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor. , 2014, Physical review letters.

[14]  H. Hosono,et al.  Thin film growth of Fe-based superconductors: from fundamental properties to functional devices. A comparative review , 2014, Reports on progress in physics. Physical Society.

[15]  V. Moshchalkov,et al.  Dynamic visualization of nanoscale vortex orbits. , 2014, ACS nano.

[16]  J. Schmalian,et al.  What drives nematic order in iron-based superconductors? , 2014, Nature Physics.

[17]  A. Millis,et al.  Nematicity as a probe of superconducting pairing in iron-based superconductors. , 2013, Physical review letters.

[18]  A. Aperis,et al.  Nematicity from mixed S_{+-} + d_{x^2-y^2} states in iron-based superconductors , 2012, 1208.2881.

[19]  E. Berg,et al.  Nematic Order in the Vicinity of a Vortex in Superconducting FeSe , 2011, 1109.2600.

[20]  T. S. Alstrøm,et al.  Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation , 2011 .

[21]  Q. Xue,et al.  Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor , 2011, Science.

[22]  R. Greene,et al.  High-temperature superconductivity in iron-based materials , 2010, 1006.4618.

[23]  A. Wisniewski,et al.  Anisotropic superconducting properties of single-crystalline FeSe0:5Te0:5 , 2010, 1004.0812.

[24]  C. Felser,et al.  Electronic and magnetic phase diagram of beta-Fe(1.01)Se with superconductivity at 36.7 K under pressure. , 2009, Nature materials.

[25]  C. Felser,et al.  Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe(1.01)Se. , 2009, Physical review letters.

[26]  Shou-Cheng Zhang,et al.  Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors. , 2008, Physical review letters.

[27]  Yi Yin,et al.  Scanning tunneling spectroscopy and vortex imaging in the iron pnictide superconductor BaFe1.8Co0.2As2. , 2008, Physical review letters.

[28]  A. Amato,et al.  Evidence of nodeless superconductivity in FeSe 0.85 from a muon-spin-rotation study of the in-plane magnetic penetration depth , 2008 .

[29]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[30]  Hideo Hosono,et al.  Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05—0.12) with Tc = 26 K. , 2008 .

[31]  W. Kwok,et al.  Direct observation of geometrical phase transitions in mesoscopic superconductors by scanning tunneling microscopy. , 2005, Physical review letters.

[32]  F. Peeters,et al.  From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks , 2004, cond-mat/0407159.

[33]  周世平,et al.  Simulating the time-dependent Ginzburg-Landau equations for type-II superconductors by finite-difference method , 2004 .

[34]  E. Fradkin,et al.  Competing order in the mixed state of high-temperature superconductors , 2002, cond-mat/0205228.

[35]  Q. Han,et al.  Vortex lattice structure in a d-wave superconductor with orthorhombic distortion , 1999 .

[36]  D. Agterberg,et al.  Ginzburg-Landau Theory for a p-Wave Sr_2RuO_4 Superconductor: Vortex Core Structure and Extended London Theory , 1998, cond-mat/9811190.

[37]  Belgium,et al.  HYSTERESIS IN MESOSCOPIC SUPERCONDUCTING DISKS : THE BEAN-LIVINGSTON BARRIER , 1998, cond-mat/9804174.

[38]  F. Peeters,et al.  Vortex Phase Diagram for Mesoscopic Superconducting Disks , 1998, cond-mat/9806013.

[39]  I. Aranson,et al.  Scanning tunneling microscopy observation of a square abrikosov lattice in LuNi2B2C , 1997 .

[40]  Wang Simulating the time-dependent dx2-y2 Ginzburg-Landau equations using the finite-element method. , 1996, Physical review. B, Condensed matter.

[41]  Sigrist,et al.  Vortices in d-wave superconductors. , 1996, Physical review. B, Condensed matter.

[42]  Xu,et al.  Structures of single vortex and vortex lattice in a d-wave superconductor. , 1996, Physical review. B, Condensed matter.

[43]  Xu,et al.  Ginzburg-Landau equations for mixed s+d symmetry superconductors. , 1996, Physical review. B, Condensed matter.

[44]  Franz,et al.  Vortex state in a d-wave superconductor. , 1995, Physical review. B, Condensed matter.

[45]  Xu,et al.  Ginzburg-Landau equations for a d-wave superconductor with applications to vortex structure and surface problems. , 1995, Physical review. B, Condensed matter.

[46]  Franz,et al.  Ginzburg-Landau theory of vortices in d-wave superconductors. , 1995, Physical review letters.

[47]  Burlachkov Magnetic relaxation over the Bean-Livingston surface barrier. , 1993, Physical review. B, Condensed matter.

[48]  Bell,et al.  Elastic constants of a monocrystal of superconducting YBa2Cu3O7- delta. , 1993, Physical review. B, Condensed matter.

[49]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[50]  Robinson,et al.  Vortex-core structure observed with a scanning tunneling microscope. , 1990, Physical review letters.

[51]  Joynt Upward curvature of Hc2 in high-Tc superconductors: Possible evidence for s-d pairing. , 1990, Physical review. B, Condensed matter.

[52]  Robinson,et al.  Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. , 1989, Physical review letters.

[53]  A. Schmid,et al.  A time dependent Ginzburg-Landau equation and its application to the problem of resistivity in the mixed state , 1966 .

[54]  Lev P. Gor'kov,et al.  Microscopic derivation of the Ginzburg--Landau equations in the theory of superconductivity , 1959 .