Cdr1p highlights the role of the non-hydrolytic ATP-binding site in driving drug translocation in asymmetric ABC pumps.

[1]  R. Prasad,et al.  PDR-like ABC systems in pathogenic fungi. , 2019, Research in microbiology.

[2]  J. Kowal,et al.  Structural insight into substrate and inhibitor discrimination by human P-glycoprotein , 2019, Science.

[3]  Jue Chen,et al.  Molecular structure of the ATP-bound, phosphorylated human CFTR , 2018, Proceedings of the National Academy of Sciences.

[4]  J. Kowal,et al.  Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states , 2018, Nature.

[5]  J. Kowal,et al.  Structural basis of small-molecule inhibition of human multidrug transporter ABCG2 , 2018, Nature Structural & Molecular Biology.

[6]  C. Junot,et al.  A multidrug ABC transporter with a taste for GTP , 2018, Scientific Reports.

[7]  R. Prasad,et al.  W1038 near D-loop of NBD2 is a focal point for inter-domain communication in multidrug transporter Cdr1 of Candida albicans. , 2018, Biochimica et biophysica acta. Biomembranes.

[8]  Jue Chen,et al.  ATP Binding Enables Substrate Release from Multidrug Resistance Protein 1 , 2018, Cell.

[9]  L. Csanády,et al.  Asymmetry of movements in CFTR's two ATP sites during pore opening serves their distinct functions , 2017, eLife.

[10]  Jue Chen,et al.  Conformational Changes of CFTR upon Phosphorylation and ATP Binding , 2017, Cell.

[11]  J. Kowal,et al.  Structure of the human multidrug transporter ABCG2 , 2017, Nature.

[12]  Jue Chen,et al.  Structural Basis of Substrate Recognition by the Multidrug Resistance Protein MRP1 , 2017, Cell.

[13]  Jue Chen,et al.  Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator , 2016, Cell.

[14]  R. Prasad,et al.  Atomic modelling and systematic mutagenesis identify residues in multiple drug binding sites that are essential for drug resistance in the major Candida transporter Cdr1. , 2016, Biochimica et biophysica acta.

[15]  K. Locher Mechanistic diversity in ATP-binding cassette (ABC) transporters , 2016, Nature Structural &Molecular Biology.

[16]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[17]  Jonathan C. Cohen,et al.  Crystal structure of the human sterol transporter ABCG5/ABCG8 , 2016, Nature.

[18]  R. Prasad,et al.  A New Endogenous Overexpression System of Multidrug Transporters of Candida albicans Suitable for Structural and Functional Studies , 2016, Front. Microbiol..

[19]  R. Prasad,et al.  Mutational Analysis of Intracellular Loops Identify Cross Talk with Nucleotide Binding Domains of Yeast ABC Transporter Cdr1p , 2015, Scientific Reports.

[20]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[21]  L. Schmitt,et al.  Generating Symmetry in the Asymmetric ATP-binding Cassette (ABC) Transporter Pdr5 from Saccharomyces cerevisiae* , 2014, The Journal of Biological Chemistry.

[22]  S. Ambudkar,et al.  The Deviant ATP-binding Site of the Multidrug Efflux Pump Pdr5 Plays an Active Role in the Transport Cycle* , 2013, The Journal of Biological Chemistry.

[23]  R. Prasad,et al.  Insight into Pleiotropic Drug Resistance ATP-binding Cassette Pump Drug Transport through Mutagenesis of Cdr1p Transmembrane Domains* , 2013, The Journal of Biological Chemistry.

[24]  S. Ambudkar,et al.  The Transmission Interface of the Saccharomyces cerevisiae Multidrug Transporter Pdr5: Val-656 Located in Intracellular Loop 2 Plays a Major Role in Drug Resistance , 2012, Antimicrobial Agents and Chemotherapy.

[25]  A. Goffeau,et al.  Yeast ATP-binding cassette transporters conferring multidrug resistance. , 2012, Annual review of microbiology.

[26]  R. Cannon,et al.  Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a d‐octapeptide derivative inhibitor , 2012, Molecular microbiology.

[27]  M. Hohl,et al.  Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation , 2012, Nature Structural &Molecular Biology.

[28]  Arnaud Orelle,et al.  Dynamics of α-helical subdomain rotation in the intact maltose ATP-binding cassette transporter , 2010, Proceedings of the National Academy of Sciences.

[29]  T. Hwang,et al.  Optimization of the Degenerated Interfacial ATP Binding Site Improves the Function of Disease-related Mutant Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channels*♦ , 2010, The Journal of Biological Chemistry.

[30]  Z. Sauna,et al.  The signaling interface of the yeast multidrug transporter Pdr5 adopts a cis conformation, and there are functional overlap and equivalence of the deviant and canonical Q-loop residues. , 2010, Biochemistry.

[31]  Tal Pupko,et al.  ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids , 2010, Nucleic Acids Res..

[32]  Lutz Schmitt,et al.  Multidrug efflux pumps: Substrate selection in ATP‐binding cassette multidrug efflux pumps – first come, first served? , 2010, The FEBS journal.

[33]  S. Ambudkar,et al.  The amino acid residues of transmembrane helix 5 of multidrug resistance protein CaCdr1p of Candida albicans are involved in substrate specificity and drug transport. , 2009, Biochimica et biophysica acta.

[34]  Jue Chen,et al.  Alternating access in maltose transporter mediated by rigid-body rotations. , 2009, Molecular cell.

[35]  Z. Sauna,et al.  Mutations Define Cross-talk between the N-terminal Nucleotide-binding Domain and Transmembrane Helix-2 of the Yeast Multidrug Transporter Pdr5 , 2008, Journal of Biological Chemistry.

[36]  K. Kuchler,et al.  A mutation of the H-loop selectively affects rhodamine transport by the yeast multidrug ABC transporter Pdr5 , 2008, Proceedings of the National Academy of Sciences.

[37]  Geoffrey Chang,et al.  Flexibility in the ABC transporter MsbA: Alternating access with a twist , 2007, Proceedings of the National Academy of Sciences.

[38]  Z. Sauna,et al.  Complete inhibition of the Pdr5p multidrug efflux pump ATPase activity by its transport substrate clotrimazole suggests that GTP as well as ATP may be used as an energy source. , 2007, Biochemistry.

[39]  Y. Uehara,et al.  Characterization of Three Classes of Membrane Proteins Involved in Fungal Azole Resistance by Functional Hyperexpression in Saccharomyces cerevisiae , 2007, Eukaryotic Cell.

[40]  Rachelle Gaudet,et al.  Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter. , 2006, Molecular cell.

[41]  R. Dawson,et al.  Structure of a bacterial multidrug ABC transporter , 2006, Nature.

[42]  Lutz Schmitt,et al.  H662 is the linchpin of ATP hydrolysis in the nucleotide‐binding domain of the ABC transporter HlyB , 2005, The EMBO journal.

[43]  Paola Vergani,et al.  CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains , 2005, Nature.

[44]  R. Tampé,et al.  Functional Non-equivalence of ATP-binding Cassette Signature Motifs in the Transporter Associated with Antigen Processing (TAP)* , 2004, Journal of Biological Chemistry.

[45]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[46]  Smriti,et al.  Functional Characterization of Candida albicans ABC Transporter Cdr1p , 2003, Eukaryotic Cell.

[47]  A. di Pietro,et al.  The Conserved Glutamate Residue Adjacent to the Walker-B Motif Is the Catalytic Base for ATP Hydrolysis in the ATP-binding Cassette Transporter BmrA* , 2003, Journal of Biological Chemistry.

[48]  A. Goffeau,et al.  Functional Expression of Candida albicans Drug Efflux Pump Cdr1p in a Saccharomyces cerevisiae Strain Deficient in Membrane Transporters , 2001, Antimicrobial Agents and Chemotherapy.

[49]  S. Cole,et al.  Comparison of the Functional Characteristics of the Nucleotide Binding Domains of Multidrug Resistance Protein 1* , 2000, The Journal of Biological Chemistry.

[50]  A. Goffeau,et al.  ATPase and Multidrug Transport Activities of the Overexpressed Yeast ABC Protein Yor1p* , 1998, The Journal of Biological Chemistry.

[51]  M. Welsh,et al.  Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins. , 1995, Biophysical journal.

[52]  C. Higgins,et al.  ABC transporters: from microorganisms to man. , 1992, Annual review of cell biology.

[53]  M. Gottesman,et al.  Multidrug resistance in cancer: role of ATP–dependent transporters , 2002, Nature Reviews Cancer.

[54]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[55]  Cs,et al.  Role of glycine-534 and glycine-1179 of human multidrug resistance protein ( MDR 1 ) in drug-mediated control of ATP hydrolysis , 2022 .