Using an environmentally benign and degradable elastomer in soft robotics

[1]  Kiseon Kim,et al.  A review on application of technology systems, standards and interfaces for agriculture and food sector , 2013, Comput. Stand. Interfaces.

[2]  Huai-Ti Lin,et al.  Towards a biomorphic soft robot: Design constraints and solutions , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[3]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[4]  I. H. Jaafar,et al.  Spectroscopic evaluation, thermal, and thermomechanical characterization of poly(glycerol-sebacate) with variations in curing temperatures and durations , 2010 .

[5]  Tanneguy Redarce,et al.  Characterization and modeling of a pneumatic actuator for a soft continuum robot , 2013, 2013 IEEE International Conference on Mechatronics and Automation.

[6]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[7]  Bao-feng Yang,et al.  Glycolic acid modulates the mechanical property and degradation of poly(glycerol, sebacate, glycolic acid). , 2010, Journal of biomedical materials research. Part A.

[8]  P. Nair,et al.  (Citric acid–co–polycaprolactone triol) polyester , 2011, Biomatter.

[9]  Nikolaos G. Tsagarakis,et al.  Enhanced Modelling and Performance in Braided Pneumatic Muscle Actuators , 2003, Int. J. Robotics Res..

[10]  Hye Rin Kwag,et al.  Self-Folding Thermo-Magnetically Responsive Soft Microgrippers , 2015, ACS applied materials & interfaces.

[11]  V. Krishnan,et al.  Bioglass: A novel biocompatible innovation , 2013, Journal of advanced pharmaceutical technology & research.

[12]  T. Ghosh,et al.  Dielectric elastomers as next-generation polymeric actuators. , 2007, Soft matter.

[13]  Stephen A. Morin,et al.  Using “Click‐e‐Bricks” to Make 3D Elastomeric Structures , 2014, Advanced materials.

[14]  Michael S Sacks,et al.  Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. , 2002, Journal of biomedical materials research.

[15]  Ali Khademhosseini,et al.  PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. , 2013, Biomaterials.

[16]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[17]  P. Germain,et al.  Methodology to Assess Silicone (Bio)Degradation and its Effects on Microbial Diversity , 2012, Journal of Polymers and the Environment.

[18]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[19]  G. Thouas,et al.  Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds , 2012 .

[20]  K. Woodhouse,et al.  Recombinant human elastin polypeptides self‐assemble into biomaterials with elastin‐like properties , 2003, Biopolymers.

[21]  Aldo R Boccaccini,et al.  Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. , 2008, Biomaterials.

[22]  Lisheng Zhang,et al.  Diisocyanate free and melt polycondensation preparation of bio-based unsaturated poly(ester-urethane)s and their properties as UV curable coating materials , 2014 .

[23]  A. Boccaccini,et al.  Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review , 2012 .

[24]  P. Anastas,et al.  Green Chemistry , 2018, Environmental Science.

[25]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[26]  David Martin,et al.  Projected needs for robot-assisted chemical, biological, radiological, or nuclear (CBRN) incidents , 2012, 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[27]  Christian J. R. Coronado,et al.  Glycerol: Production, consumption, prices, characterization and new trends in combustion , 2013 .

[28]  R. Langer,et al.  A tough biodegradable elastomer , 2002, Nature Biotechnology.

[29]  W. Kao,et al.  Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems , 2010, Expert opinion on drug delivery.

[30]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[31]  D. Mulla Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .

[32]  Sanlin S. Robinson,et al.  Poroelastic Foams for Simple Fabrication of Complex Soft Robots , 2015, Advanced materials.

[33]  Chunye Xu,et al.  A novel dielectric elastomer actuator based on polyvinyl alcohol hydrogel electrodes , 2014, 1409.2611.

[34]  George M. Whitesides,et al.  A Hybrid Combining Hard and Soft Robots , 2014 .

[35]  Ali Khademhosseini,et al.  Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. , 2013, Biomaterials.

[36]  W. Mark Saltzman,et al.  Drug Delivery: Engineering Principles for Drug Therapy , 2001 .

[37]  W. Cook,et al.  The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. , 2010, Biomaterials.

[38]  Angelo S. Mao,et al.  An Integrated Microrobotic Platform for On‐Demand, Targeted Therapeutic Interventions , 2014, Advanced materials.

[39]  J. Karp,et al.  Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). , 2007, Biomacromolecules.

[40]  Jonathan Rossiter,et al.  Biodegradable and edible gelatine actuators for use as artificial muscles , 2014, Smart Structures.

[41]  W. L. Xu,et al.  Soft Actuator Mimicking Human Esophageal Peristalsis for a Swallowing Robot , 2014, IEEE/ASME Transactions on Mechatronics.

[42]  A. Stoica Robotic Scaffolds for Tissue Engineering and Organ Growth , 2009, 2009 Advanced Technologies for Enhanced Quality of Life.

[43]  K. Bertoldi,et al.  Dielectric Elastomer Based “Grippers” for Soft Robotics , 2015, Advanced materials.

[44]  W. Saltzman Tissue Engineering: Engineering Principles for the Design of Replacement Organs and Tissues , 2004 .

[45]  Giovanni Muscato,et al.  Volcanic Environments: Robots for Exploration and Measurement , 2012, IEEE Robotics & Automation Magazine.

[46]  Daniela Rus,et al.  An untethered miniature origami robot that self-folds, walks, swims, and degrades , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[47]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[48]  Guillermo Antonio Ameer,et al.  Novel Citric Acid‐Based Biodegradable Elastomers for Tissue Engineering , 2004 .

[49]  W. Cook,et al.  Physical characterization of poly(glycerol sebacate)/Bioglass composites , 2012 .

[50]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[51]  Stephen A. Morin,et al.  Elastomeric Tiles for the Fabrication of Inflatable Structures , 2014 .

[52]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[53]  Paul E. I. Pounds,et al.  Samara: low-cost deployment for environmental sensing using passive autorotation , 2012 .

[54]  Van Anh Ho,et al.  Development and Analysis of a Sliding Tactile Soft Fingertip Embedded With a Microforce/Moment Sensor , 2011, IEEE Transactions on Robotics.

[55]  D S Ogunniyi,et al.  Castor oil: a vital industrial raw material. , 2006, Bioresource technology.

[56]  Aldo R Boccaccini,et al.  An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. , 2010, Biomaterials.

[57]  W. Kier,et al.  Tongues, tentacles and trunks: the biomechanics of movement in muscular‐hydrostats , 1985 .

[58]  K. Rumbold,et al.  Microbial utilization of crude glycerol for the production of value-added products , 2012, Journal of Industrial Microbiology & Biotechnology.