Conceptual Analysis of Big Data Using Ontologies and EER
暂无分享,去创建一个
[1] Theodore G. Cleveland,et al. Statistical characteristics of storm interevent time, depth, and duration for eastern New Mexico, Oklahoma, and Texas , 2006 .
[2] David W. Embley,et al. Big Data - Conceptual Modeling to the Rescue , 2013, ER.
[3] V. Singh,et al. Soil Conservation Service Curve Number (SCS-CN) Methodology , 2003 .
[4] Aart Overeem,et al. Rainfall depth-duration-frequency curves and their uncertainties , 2008 .
[5] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[6] Dino Pedreschi,et al. Spatio-temporal Data Mining , 2008, Encyclopedia of GIS.
[7] Ramez Elmasri,et al. Complete storm identification algorithms from big raw rainfall data using MapReduce framework , 2013, 2013 IEEE International Conference on Big Data.
[8] Leslie G. Valiant,et al. A bridging model for multi-core computing , 2008, J. Comput. Syst. Sci..
[9] Raymond M. Slade,et al. Extreme precipitation depths for Texas, excluding the Trans-Pecos region , 1998 .
[10] Ramez Elmasri,et al. Extracting storm-centric characteristics from raw rainfall data for storm analysis and mining , 2012, BigSpatial '12.
[11] Wilson C. Hsieh,et al. Bigtable: A Distributed Storage System for Structured Data , 2006, TOCS.
[12] Ramez Elmasri,et al. Fundamentals of database systems (2nd ed.) , 1994 .
[13] Ramez Elmasri,et al. Using MapReduce to Speed Up Storm Identification from Big Raw Rainfall Data , 2013, CLOUD 2013.
[14] Chuck Lam,et al. Hadoop in Action , 2010 .
[15] W. Asquith. Depth-duration frequency of precipitation for Texas , 1998 .