Fast determination of the optimal rotational matrix for macromolecular superpositions

Finding the rotational matrix that minimizes the sum of squared deviations between two vectors is an important problem in bioinformatics and crystallography. Traditional algorithms involve the inversion or decomposition of a 3 × 3 or 4 × 4 matrix, which can be computationally expensive and numerically unstable in certain cases. Here, we present a simple and robust algorithm to rapidly determine the optimal rotation using a Newton‐Raphson quaternion‐based method and an adjoint matrix. Our method is at least an order of magnitude more efficient than conventional inversion/decomposition methods, and it should be particularly useful for high‐throughput analyses of molecular conformations. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010

[1]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[2]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[3]  P. Bradley,et al.  High-resolution structure prediction and the crystallographic phase problem , 2007, Nature.

[4]  D. Theobald short communications Acta Crystallographica Section A Foundations of , 2005 .

[5]  W. Kabsch A discussion of the solution for the best rotation to relate two sets of vectors , 1978 .

[6]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[7]  P E Bourne,et al.  Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. , 1998, Protein engineering.

[8]  D. Baker,et al.  Design of a Novel Globular Protein Fold with Atomic-Level Accuracy , 2003, Science.

[9]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[10]  J. Gower Generalized procrustes analysis , 1975 .

[11]  A. D. McLachlan,et al.  Rapid comparison of protein structures , 1982 .

[12]  A. M. Lesk,et al.  A toolkit for computational molecular biology. II. On the optimal superposition of two sets of coordinates , 1986 .

[13]  Adam Godzik,et al.  Flexible structure alignment by chaining aligned fragment pairs allowing twists , 2003, ECCB.

[14]  Eric A. Althoff,et al.  De Novo Computational Design of Retro-Aldol Enzymes , 2008, Science.

[15]  P. Schönemann,et al.  Fitting one matrix to another under choice of a central dilation and a rigid motion , 1970 .

[16]  F. R. Gantmakher The Theory of Matrices , 1984 .

[17]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  J. Hermans,et al.  A different best rigid-body molecular fit routine , 1977 .

[19]  Conrad C. Huang,et al.  The Structure Superposition Database , 2003, Nucleic Acids Res..

[20]  A. Diamond,et al.  Preschool Program Improves Cognitive Control , 2007, Science.

[21]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[22]  B. Steipe,et al.  A revised proof of the metric properties of optimally superimposed vector sets. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[23]  Dimitris K. Agrafiotis,et al.  Self‐organizing superimposition algorithm for conformational sampling , 2007, J. Comput. Chem..

[24]  Lenore Cowen,et al.  Matt: Local Flexibility Aids Protein Multiple Structure Alignment , 2008, PLoS Comput. Biol..

[25]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[26]  R. Diamond A note on the rotational superposition problem , 1988 .

[27]  G. Kostorz,et al.  Theory of structural transformations in solids by A. G. Khachaturyan , 1985 .

[28]  William H. Press,et al.  Numerical recipes in C , 2002 .

[29]  S. Kearsley On the orthogonal transformation used for structural comparisons , 1989 .