The closing lemma and the planar general density theorem for Sobolev maps

We prove that given a non-wandering point of a Sobolev- ( 1 , p ) (1,p) homeomorphism we can create closed trajectories by making arbitrarily small perturbations. As an application, in the planar case, we obtain that generically the closed trajectories are dense in the non-wandering set.

[1]  Tadeusz Iwaniec,et al.  Diffeomorphic Approximation of Sobolev Homeomorphisms , 2011 .

[2]  Edson de Faria,et al.  Infinite entropy is generic in Hölder and Sobolev spaces , 2017 .

[3]  C. Pugh,et al.  The Closing Lemma , 1967 .

[4]  C. Pugh Against the C2 closing lemma , 1975 .

[5]  Sobolev homeomorphisms are dense in volume preserving automorphisms , 2019, Journal of Functional Analysis.

[6]  M. J. Torres,et al.  The C0 general density theorem for geodesic flows , 2013, 1304.1069.

[7]  A $${C^\infty}$$C∞ closing lemma for Hamiltonian diffeomorphisms of closed surfaces , 2015, 1512.06336.

[8]  L. Wen The C1 closing lemma for non-singular endomorphisms , 1991, Ergodic Theory and Dynamical Systems.

[9]  M. J. Torres,et al.  On the periodic orbits, shadowing and strong transitivity of continuous flows , 2018, Nonlinear Analysis.

[10]  Charles Pugh,et al.  The C1 Closing Lemma, including Hamiltonians , 1983, Ergodic Theory and Dynamical Systems.

[11]  C. Pugh An Improved Closing Lemma and a General Density Theorem , 1967 .

[12]  M. Hurley On proofs of the ⁰ general density theorem , 1996 .

[13]  M. R. Herman Différentiabilité optimale et contre-exemples à la fermeture en topologie C∞ des orbites récurrentes de flots hamiltoniens , 1991 .

[14]  S. Smale Stable Manifolds for Differential Equations and Diffeomorphisms , 2011 .

[15]  DIFFEOMORPHIC APPROXIMATION OF W 1;1 PLANAR SOBOLEV HOMEOMORPHISMS , 2015, 1502.07253.

[16]  A Note on Generic Properties of Continuous Maps , 1982 .

[17]  C1-generic billiard tables have a dense set of periodic points , 2013, 1409.5201.