The closing lemma and the planar general density theorem for Sobolev maps
暂无分享,去创建一个
[1] Tadeusz Iwaniec,et al. Diffeomorphic Approximation of Sobolev Homeomorphisms , 2011 .
[2] Edson de Faria,et al. Infinite entropy is generic in Hölder and Sobolev spaces , 2017 .
[3] C. Pugh,et al. The Closing Lemma , 1967 .
[4] C. Pugh. Against the C2 closing lemma , 1975 .
[5] Sobolev homeomorphisms are dense in volume preserving automorphisms , 2019, Journal of Functional Analysis.
[6] M. J. Torres,et al. The C0 general density theorem for geodesic flows , 2013, 1304.1069.
[7] A $${C^\infty}$$C∞ closing lemma for Hamiltonian diffeomorphisms of closed surfaces , 2015, 1512.06336.
[8] L. Wen. The C1 closing lemma for non-singular endomorphisms , 1991, Ergodic Theory and Dynamical Systems.
[9] M. J. Torres,et al. On the periodic orbits, shadowing and strong transitivity of continuous flows , 2018, Nonlinear Analysis.
[10] Charles Pugh,et al. The C1 Closing Lemma, including Hamiltonians , 1983, Ergodic Theory and Dynamical Systems.
[11] C. Pugh. An Improved Closing Lemma and a General Density Theorem , 1967 .
[12] M. Hurley. On proofs of the ⁰ general density theorem , 1996 .
[13] M. R. Herman. Différentiabilité optimale et contre-exemples à la fermeture en topologie C∞ des orbites récurrentes de flots hamiltoniens , 1991 .
[14] S. Smale. Stable Manifolds for Differential Equations and Diffeomorphisms , 2011 .
[15] DIFFEOMORPHIC APPROXIMATION OF W 1;1 PLANAR SOBOLEV HOMEOMORPHISMS , 2015, 1502.07253.
[16] A Note on Generic Properties of Continuous Maps , 1982 .
[17] C1-generic billiard tables have a dense set of periodic points , 2013, 1409.5201.