On interestingness measures of formal concepts

Abstract Formal concepts and closed itemsets proved to be of big importance for knowledge discovery, both as a tool for concise representation of association rules and a tool for clustering and constructing domain taxonomies and ontologies. Exponential explosion makes it difficult to consider the whole concept lattice arising from data, one needs to select most useful and interesting concepts. In this paper interestingness measures of concepts are considered and compared with respect to various aspects, such as efficiency of computation and applicability to noisy data and performing ranking correlation.

[1]  Jonas Poelmans,et al.  Knowledge representation and processing with formal concept analysis , 2013, WIREs Data Mining Knowl. Discov..

[2]  Camille Roth,et al.  Towards Concise Representation for Taxonomies of Epistemic Communities , 2006, CLA.

[3]  Wilfred Ng,et al.  \delta-Tolerance Closed Frequent Itemsets , 2006, Sixth International Conference on Data Mining (ICDM'06).

[4]  Radim Belohlávek,et al.  Basic Level of Concepts in Formal Concept Analysis , 2012, ICFCA.

[5]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[6]  Václav Snásel,et al.  On Concept Lattices and Implication Bases from Reduced Contexts , 2008, ICCS Supplement.

[7]  Sihem Amer-Yahia,et al.  Testing Interestingness Measures in Practice: A Large-Scale Analysis of Buying Patterns , 2016, 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[8]  Nikolaj Tatti,et al.  Finding Robust Itemsets under Subsampling , 2011, 2011 IEEE 11th International Conference on Data Mining.

[9]  G. Murphy,et al.  The Big Book of Concepts , 2002 .

[10]  Radim Belohlávek,et al.  Basic Level in Formal Concept Analysis: Interesting Concepts and Psychological Ramifications , 2013, IJCAI.

[11]  Amedeo Napoli,et al.  Analysis of Social Communities with Iceberg and Stability-Based Concept Lattices , 2008, ICFCA.

[12]  Maurizio Vichi,et al.  Studies in Classification Data Analysis and knowledge Organization , 2011 .

[13]  Douglas R. Vogel,et al.  Complexity Reduction in Lattice-Based Information Retrieval , 2005, Information Retrieval.

[14]  Vilém Vychodil,et al.  Formal Concept Analysis With Background Knowledge: Attribute Priorities , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[15]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[16]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[17]  Alípio Mário Jorge,et al.  Comparing Rule Measures for Predictive Association Rules , 2007, ECML.

[18]  Camille Roth,et al.  Approaches to the Selection of Relevant Concepts in the Case of Noisy Data , 2010, ICFCA.

[19]  Ants Torim,et al.  Sorting Concepts by Priority Using the Theory of Monotone Systems , 2008, ICCS.

[20]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[21]  Gerd Stumme,et al.  Conceptual Knowledge Discovery in Databases Using Formal Concept Analysis Methods , 1998, PKDD.

[22]  Sérgio M. Dias,et al.  Reducing the Size of Concept Lattices: The JBOS Approach , 2010, CLA.

[23]  Sergei O. Kuznetsov,et al.  On stability of a formal concept , 2007, Annals of Mathematics and Artificial Intelligence.

[24]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[25]  Fabian Mörchen,et al.  Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression , 2010, Knowledge and Information Systems.

[26]  Inderjit S. Dhillon,et al.  Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.

[27]  Michael D. Lee,et al.  A Comparison of Three Measures of the Association Between a Feature and a Concept , 2011, CogSci.

[28]  Aleksey Buzmakov,et al.  Fast Generation of Best Interval Patterns for Nonmonotonic Constraints , 2015, ECML/PKDD.

[29]  Aleksey Buzmakov,et al.  SOFIA: How to Make FCA Polynomial? , 2015, FCA4AI@IJCAI.

[30]  Ivo Düntsch,et al.  Simplifying Contextual Structures , 2015, PReMI.

[31]  Sergei O. Kuznetsov,et al.  Concept Interestingness Measures: a Comparative Study , 2015, CLA.

[32]  Jeremy P. Spinrad,et al.  Efficiently Computing a Linear Extension of the Sub-hierarchy of a Concept Lattice , 2005, ICFCA.

[33]  Jonas Poelmans,et al.  Formal concept analysis in knowledge processing: A survey on applications , 2013, Expert Syst. Appl..

[34]  Jasminka Dobša,et al.  Comparison of Information Retrieval Techniques: Latent Semantic Indexing and Concept Indexing , 2004 .

[35]  Howard J. Hamilton,et al.  Interestingness measures for data mining: A survey , 2006, CSUR.

[36]  Sergei O. Kuznetsov,et al.  Approximating Concept Stability , 2012, ICFCA.

[37]  Concepts of a Discrete Random Variable , 2007 .

[38]  Gerd Stumme,et al.  Computing iceberg concept lattices with T , 2002, Data Knowl. Eng..

[39]  Sergei O. Kuznetsov,et al.  Triadic Formal Concept Analysis and triclustering: searching for optimal patterns , 2015, Machine Learning.

[40]  Heikki Mannila,et al.  Efficient Algorithms for Discovering Association Rules , 1994, KDD Workshop.

[41]  Claudio Carpineto,et al.  A lattice conceptual clustering system and its application to browsing retrieval , 2004, Machine Learning.

[42]  Marianne Huchard,et al.  Performances of Galois Sub-hierarchy-building Algorithms , 2007, ICFCA.

[43]  StummeGerd,et al.  Computing iceberg concept lattices with TITANIC , 2002 .

[44]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[45]  Camille Roth,et al.  Reducing the Representation Complexity of Lattice-Based Taxonomies , 2007, ICCS.

[46]  Aleksey Buzmakov,et al.  Scalable Estimates of Concept Stability , 2014, ICFCA.

[47]  Jonas Poelmans,et al.  Formal Concept Analysis in knowledge processing: A survey on models and techniques , 2013, Expert Syst. Appl..

[48]  Mohammed J. Zaki Data Mining and Analysis: Fundamental Concepts and Algorithms , 2014 .

[49]  Radim Belohlávek,et al.  Selecting Important Concepts Using Weights , 2011, ICFCA.

[50]  Bernhard Ganter,et al.  Contextual Attribute Logic , 1999, ICCS.