Most high-performance, scientific libraries have adopted hybrid parallelization schemes - such as the popular MPI+OpenMP hybridization - to benefit from the capacities of modern distributed-memory machines. While these approaches have shown to achieve high performance, they require a lot of effort to design and maintain sophisticated synchronization/communication strategies. On the other hand, task-based programming paradigms aim at delegating this burden to a runtime system for maximizing productivity. In this article, we assess the potential of task-based fast multipole methods (FMM) on clusters of multicore processors. We propose both a hybrid MPI+task FMM parallelization and a pure task-based parallelization where the MPI communications are implicitly handled by the runtime system. The latter approach yields a very compact code following a sequential task-based programming model. We show that task-based approaches can compete with a hybrid MPI+OpenMP highly optimized code and that furthermore the compact task-based scheme fully matches the performance of the sophisticated, hybrid MPI+task version, ensuring performance while maximizing productivity. We illustrate our discussion with the ScalFMM FMM library and the StarPU runtime system.