In-Situ Cation-Exchange Strategy for Engineering Single-Atomic Co on Tio2 Photoanode Toward Efficient and Durable Solar Water Splitting

[1]  Cheng Lu,et al.  Improved Water Oxidation of Fe2O3/Fe2TiO5 Photoanode by Functionalizing with a Hydrophilic Organic Hole Storage Overlayer , 2022, ACS Catalysis.

[2]  Jiaguo Yu,et al.  Challenges for photocatalytic overall water splitting , 2022, Chem.

[3]  Xinru Li,et al.  Challenges of photocatalysis and their coping strategies , 2022, Chem Catalysis.

[4]  Yi Yang,et al.  Lattice‐Confined Single‐Atom Fe1S x on Mesoporous TiO2 for Boosting Ambient Electrocatalytic N2 Reduction Reaction , 2022, Angewandte Chemie.

[5]  Licheng Sun,et al.  Engineering MoOx/MXene Hole Transfer Layers for Unexpected Boosting Photoelectrochemical Water Oxidation. , 2022, Angewandte Chemie.

[6]  Kan Zhang,et al.  Continuous Oxygen Vacancy Gradient in TiO2 Photoelectrodes by a Photoelectrochemical‐Driven “Self‐Purification” Process , 2022, Advanced Energy Materials.

[7]  Zhen Wei,et al.  Nitrogen-defect induced trap states steering electron-hole migration in graphite carbon nitride , 2022, Applied Catalysis B: Environmental.

[8]  D. Luan,et al.  Single-atom catalysts for photocatalytic energy conversion , 2022, Joule.

[9]  Kan Zhang,et al.  Boosting Charge Transport in BiVO4 Photoanode for Solar Water Oxidation , 2021, Advanced materials.

[10]  S. Qiao,et al.  Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts , 2021, Advanced science.

[11]  Hui Huang,et al.  Carbon dots enhance the interface electron transfer and photoelectrochemical kinetics in TiO2 photoanode , 2021, Applied Catalysis B: Environmental.

[12]  Licheng Sun,et al.  Engineering Single-Atomic Ni-N4-O Sites on Semiconductor Photoanodes for High-Performance Photoelectrochemical Water Splitting. , 2021, Journal of the American Chemical Society.

[13]  Yongfa Zhu,et al.  Construction of Interfacial Electric Field via Dual‐Porphyrin Heterostructure Boosting Photocatalytic Hydrogen Evolution , 2021, Advanced materials.

[14]  Huilin Hou,et al.  Boosting solar water oxidation activity of BiVO4 photoanode through an efficient in-situ selective surface cation exchange strategy , 2021, Journal of Energy Chemistry.

[15]  Xianhu Liu,et al.  Ultrastable and High-performance Seawater-based Photoelectrolysis System for Solar Hydrogen Generation , 2021, Applied Catalysis B: Environmental.

[16]  Huilin Hou,et al.  MXenes-like Multilayered Tungsten Oxide Architectures for Efficient Photoelectrochemical Water Splitting , 2021, Chemical Engineering Journal.

[17]  Lei Li,et al.  Electrochemically reduced TiO2 photoanode coupled with oxygen vacancy-rich carbon quantum dots for synergistically improving photoelectrochemical performance , 2021, Chemical Engineering Journal.

[18]  H. Tüysüz,et al.  Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction , 2021, Angewandte Chemie.

[19]  Qizhao Wang,et al.  Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity , 2021 .

[20]  L. Mai,et al.  Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations , 2021, Advanced materials.

[21]  A. Kirkland,et al.  High Loading of Transition Metal Single Atoms on Chalcogenide Catalysts. , 2021, Journal of the American Chemical Society.

[22]  S. Linic,et al.  Design Principles for Efficient and Stable Water Splitting Photoelectrocatalysts. , 2021, Accounts of chemical research.

[23]  Shaohua Shen,et al.  Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting , 2021, Nature Energy.

[24]  Zhiqun Lin,et al.  General and Robust Photothermal‐Heating‐Enabled High‐Efficiency Photoelectrochemical Water Splitting , 2021, Advanced materials.

[25]  S. Feng,et al.  Surface polarization enables high charge separation in TiO2 nanorod photoanode , 2021, Nano Research.

[26]  P. Kamat,et al.  Why Seeing Is Not Always Believing: Common Pitfalls in Photocatalysis and Electrocatalysis , 2021 .

[27]  A. Wibowo,et al.  Cation exchange in metal-organic frameworks (MOFs): The hard-soft acid-base (HSAB) principle appraisal , 2020 .

[28]  K. Sayama,et al.  Electrochemical and photoelectrochemical water oxidation for hydrogen peroxide production. , 2020, Angewandte Chemie.

[29]  X. Lou,et al.  Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution , 2020, Science Advances.

[30]  E. Carter,et al.  Why Do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting? , 2020 .

[31]  C. Su,et al.  Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution , 2020, Nature Communications.

[32]  A. Du,et al.  In Situ Formation of Oxygen Vacancies Achieving Near‐Complete Charge Separation in Planar BiVO4 Photoanodes , 2020, Advanced materials.

[33]  Jie Yin,et al.  Optimized Metal Chalcogenides for Boosting Water Splitting , 2020, Advanced science.

[34]  Yejun Qiu,et al.  A Ni2P nanocrystal cocatalyst enhanced TiO2 photoanode towards highly efficient photoelectrochemical water splitting , 2020 .

[35]  X. Lou,et al.  Fabrication of Heterostructured Fe 2 TiO 5 –TiO 2 Nanocages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion , 2020, Angewandte Chemie.

[36]  A. Du,et al.  Molten Salt Mediated Synthesis of Atomic Ni Co-catalyst on TiO2 for Improved Photocatalytic H2 Evolution. , 2020, Angewandte Chemie.

[37]  Lifeng Liu,et al.  Strategies for Semiconductor/Electrocatalyst Coupling toward Solar‐Driven Water Splitting , 2020, Advanced science.

[38]  K. Domen,et al.  Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. , 2020, Chemical reviews.

[39]  Yihe Zhang,et al.  Photocatalytic Oxygen Evolution from Water Splitting , 2020, Advanced science.

[40]  Ying Li,et al.  Interfacial Charge Transport in 1D TiO2 Based Photoelectrodes for Photoelectrochemical Water Splitting. , 2019, Small.

[41]  K. Qiu,et al.  High electrocatalytic hydrogen evolution activity on a coupled Ru and CoO hybrid electrocatalyst , 2019, Journal of Energy Chemistry.

[42]  Ruiqin Q. Zhang,et al.  Thermal vacuum de-oxygenation and post oxidation of TiO2 nanorod arrays for enhanced photoelectrochemical properties , 2019, Journal of Materials Chemistry A.

[43]  Gongming Wang,et al.  The “Midas Touch” Transformation of TiO2 Nanowire Arrays during Visible Light Photoelectrochemical Performance by Carbon/Nitrogen Coimplantation , 2018 .

[44]  D. Ding,et al.  Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting , 2018, Applied Surface Science.

[45]  J. Zou,et al.  2D Porous TiO2 Single‐Crystalline Nanostructure Demonstrating High Photo‐Electrochemical Water Splitting Performance , 2018, Advanced materials.

[46]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[47]  Yingpu Bi,et al.  High-performance and stable BiVO4 photoanodes for solar water splitting via phosphorus-oxygen bonded FeNi catalysts , 2022, Energy & Environmental Science.

[48]  Jinlong Yang,et al.  Isolated Pd atom anchoring endows cobalt diselenides with regulated water-reduction kinetics for alkaline hydrogen evolution , 2021 .

[49]  Hong Wang,et al.  Unravelling the essential difference between TiOx and AlOx interface layers on Ta3N5 photoanode for photoelectrochemical water oxidation , 2022 .