Existence of epidemic waves in a disease transmission model with two-habitat population

A three variable mathematical model describing the propagation of an infectious disease in a human population is proposed and analyzed. The human population is assumed to live in two distinct habitats with no inter-habitat migration. The infectious agent disperse randomly among the said habitats. Methods of upper and lower solutions are used to establish the existence of traveling wave solutions connecting the trivial with the nontrivial equilibrium. The critical wave speed required for the existence of such wave solutions has been found out and shown to depend on different system parameters together with the dispersal rate.

[1]  Steven R. Dunbar,et al.  Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits , 1986 .

[2]  Arthur T. Winfree,et al.  Rotating Chemical Reactions , 1974 .

[3]  V Capasso,et al.  Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases , 1981, Journal of mathematical biology.

[4]  Xiao-Qiang Zhao,et al.  Global Asymptotic Stability of Traveling Waves in Delayed Reaction-Diffusion Equations , 2000, SIAM J. Math. Anal..

[5]  Ingemar Nåsell,et al.  The transmission dynamics of schistosomiasis , 1973 .

[6]  A. Volpert,et al.  Traveling Wave Solutions of Parabolic Systems: Translations of Mathematical Monographs , 1994 .

[7]  Xingfu Zou,et al.  Traveling Wave Fronts of Reaction-Diffusion Systems with Delay , 2001 .

[8]  Jonathan A. Sherratt,et al.  Periodic travelling waves in cyclic predator–prey systems , 2001 .

[9]  Jonathan A. Sherratt On the Evolution of Periodic Plane Waves in Reaction-Diffusion Systems of Lambda-Omega Type , 1994, SIAM J. Appl. Math..

[10]  A. J. Perumpanani,et al.  Traveling Shock Waves Arising in a Model of Malignant Invasion , 1999, SIAM J. Appl. Math..

[11]  J. Sherratt A comparison of two numerical methods for oscillatory reaction-diffusion systems☆ , 1997 .

[12]  D. Aronson,et al.  Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation , 1975 .

[13]  J A Sherratt,et al.  Generation of periodic waves by landscape features in cyclic predator–prey systems , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  J. Keener A geometrical theory for spiral waves in excitable media , 1986 .

[15]  A. Winfree The geometry of biological time , 1991 .

[16]  Vincenzo Capasso,et al.  Analysis of a Reaction-Diffusion System Modeling Man-Environment-Man Epidemics , 1997, SIAM J. Appl. Math..

[17]  P. Bassanini,et al.  Theory and applications of partial differential equations , 1997 .

[18]  Xingfu Zou,et al.  Erratum to “Traveling Wave Fronts of Reaction-Diffusion Systems with Delays” [J. Dynam. Diff. Eq. 13, 651, 687 (2001)] , 2008 .

[19]  Xiao-Qiang Zhao,et al.  Fisher waves in an epidemic model , 2004 .

[20]  Karl Kunisch,et al.  A reaction-diffusion system arising in modelling man-environment diseases , 1988 .

[21]  V. Capasso Mathematical Structures of Epidemic Systems , 1993, Lecture Notes in Biomathematics.

[22]  Z. Jing,et al.  GLOBAL ASYMPTOTIC BEHAVIOR IN SOME COOPERATIVE SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS , 2005 .

[23]  Klaus W. Schaaf Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations , 1987 .

[24]  S. A. Gourley Travelling front solutions of a nonlocal Fisher equation , 2000, Journal of mathematical biology.

[25]  Lucia Maddalena,et al.  Saddle point behaviour for a reaction-diffusion system: Application to a class of epidemic models , 1982 .

[26]  Lee A. Segel,et al.  Mathematical models in molecular and cellular biology , 1982, The Mathematical Gazette.

[27]  Jonathan A. Sherratt,et al.  Invading wave fronts and their oscillatory wakes are linked by a modulated travelling phase resetting wave , 1998 .

[28]  Jonathan A. Sherratt,et al.  Periodic Travelling Wave Selection by Dirichlet Boundary Conditions in Oscillatory Reaction-Diffusion Systems , 2003, SIAM J. Appl. Math..

[29]  J. Sherratt Unstable wavetrains and chaotic wakes in reaction-diffusion systems of l-Ω type , 1995 .

[30]  Shiwang Ma,et al.  Traveling Wavefronts for Delayed Reaction-Diffusion Systems via a Fixed Point Theorem , 2001 .

[31]  J. Sherratt,et al.  Biological inferences from a mathematical model for malignant invasion. , 1996, Invasion & metastasis.

[32]  B. Mukhopadhyay,et al.  Influence of self- and cross-diffusion on wave train solutions of reaction-diffusion systems , 2005, Int. J. Syst. Sci..

[33]  Alison L. Kay,et al.  On the persistence of spatiotemporal oscillations generated by invasion , 1999 .