Mathematical modeling of gene expression: a guide for the perplexed biologist

The detailed analysis of transcriptional networks holds a key for understanding central biological processes, and interest in this field has exploded due to new large-scale data acquisition techniques. Mathematical modeling can provide essential insights, but the diversity of modeling approaches can be a daunting prospect to investigators new to this area. For those interested in beginning a transcriptional mathematical modeling project, we provide here an overview of major types of models and their applications to transcriptional networks. In this discussion of recent literature on thermodynamic, Boolean, and differential equation models, we focus on considerations critical for choosing and validating a modeling approach that will be useful for quantitative understanding of biological systems.

[1]  M. Levine,et al.  Computational Models for Neurogenic Gene Expression in the Drosophila Embryo , 2006, Current Biology.

[2]  Stanislav Y Shvartsman,et al.  Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a stable protein. , 2007, Developmental biology.

[3]  Johannes Jaeger,et al.  Reverse engineering a gene network using an asynchronous parallel evolution strategy , 2010, BMC Systems Biology.

[4]  David H. Sharp,et al.  Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene , 2006, Nature Genetics.

[5]  Douglas B. Kell,et al.  MEG (Model Extender for Gepasi): a program for the modelling of complex, heterogeneous, cellular systems , 2001, Bioinform..

[6]  Michael C Mackey,et al.  Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon. , 2004, Biophysical journal.

[7]  Jason Gertz,et al.  Environment-specific combinatorial cis-regulation in synthetic promoters , 2009, Molecular systems biology.

[8]  Martin A. Nowak,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004 .

[9]  A Babloyantz,et al.  Chemical instabilities of “all‐or‐none” type in β ‐ galactosidase induction and active transport , 1972, FEBS letters.

[10]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[11]  E. Davidson,et al.  Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. , 1998, Science.

[12]  Nicolas E. Buchler,et al.  On schemes of combinatorial transcription logic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[14]  David H. Sharp,et al.  Dynamical Analysis of Regulatory Interactions in the Gap Gene System of Drosophila melanogaster , 2004, Genetics.

[15]  T. Kornberg,et al.  Proteolysis That Is Inhibited by Hedgehog Targets Cubitus interruptus Protein to the Nucleus and Converts It to a Repressor , 1997, Cell.

[16]  James B. Brown,et al.  Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions , 2009, Genome Biology.

[17]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[18]  George S. Michaels,et al.  Sensitivity of Biological Models to Errors in Parameter Estimates , 1999, Pacific Symposium on Biocomputing.

[19]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[20]  K. Struhl Fundamentally Different Logic of Gene Regulation in Eukaryotes and Prokaryotes , 1999, Cell.

[21]  Vladimir Filkov,et al.  Identifying Gene Regulatory Networks from Gene Expression Data , 2005 .

[22]  C. Yanofsky,et al.  Role of regulatory features of the trp operon of Escherichia coli in mediating a response to a nutritional shift , 1994, Journal of bacteriology.

[23]  H. Jäckle,et al.  From gradients to stripes in Drosophila embryogenesis: filling in the gaps. , 1996, Trends in genetics : TIG.

[24]  Charless C. Fowlkes,et al.  Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline , 2006, Genome Biology.

[25]  T. Ziehn,et al.  A global sensitivity study of sulfur chemistry in a premixed methane flame model using HDMR , 2008 .

[26]  P. V. von Hippel,et al.  Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: equilibrium aspects. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Hernan G. Garcia,et al.  Transcriptional Regulation by the Numbers 2: Applications , 2004, q-bio/0412011.

[28]  M. Santillán,et al.  Bistable behavior in a model of the lac operon in Escherichia coli with variable growth rate. , 2008, Biophysical journal.

[29]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[30]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[31]  E. Davidson,et al.  Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. , 2001, Development.

[32]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[33]  E. Siggia,et al.  Analysis of Combinatorial cis-Regulation in Synthetic and Genomic Promoters , 2008, Nature.

[34]  E. Segal,et al.  Predicting expression patterns from regulatory sequence in Drosophila segmentation , 2008, Nature.

[35]  N. D. Clarke,et al.  Explicit equilibrium modeling of transcription-factor binding and gene regulation , 2005, Genome Biology.

[36]  A. McGregor,et al.  How to get ahead: the origin, evolution and function of bicoid , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[37]  D. Tautz,et al.  Autonomous concentration-dependent activation and repression of Krüppel by hunchback in the Drosophila embryo. , 1994, Development.

[38]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[39]  Daniel E. Newburger,et al.  High-resolution DNA-binding specificity analysis of yeast transcription factors. , 2009, Genome research.

[40]  Justin Crocker,et al.  Evolution Acts on Enhancer Organization to Fine-Tune Gradient Threshold Readouts , 2008, PLoS biology.

[41]  Xiaozhou Liu,et al.  Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects , 2010, BMC Systems Biology.

[42]  Esther T. Chan,et al.  Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites. , 2010, Genomics.

[43]  M. Kreitman,et al.  Evolutionary dynamics of the enhancer region of even-skipped in Drosophila. , 1995, Molecular biology and evolution.

[44]  G. K. Ackers,et al.  Quantitative model for gene regulation by lambda phage repressor. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Daniel St Johnston,et al.  Seeing Is Believing The Bicoid Morphogen Gradient Matures , 2004, Cell.

[46]  G. Stormo,et al.  Analysis of Homeodomain Specificities Allows the Family-wide Prediction of Preferred Recognition Sites , 2008, Cell.

[47]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[48]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[49]  Claude Desplan,et al.  Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila , 1994, Cell.

[50]  S. Sinha Theoretical study of tryptophan operon: Application in microbial technology , 1988, Biotechnology and bioengineering.

[51]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[52]  M. Laubichler Review of: Carroll, Sean B., Jennifer K. Grenier and Scott D. Weatherbee: From DNA to diversity : molecular genetics and the evolution of animal design. Malden, Mass [u.a.]: Blackwell Science 2001 , 2003 .

[53]  M. Levine,et al.  Multiple modes of dorsal‐bHLH transcriptional synergy in the Drosophila embryo. , 1995, The EMBO journal.

[54]  W. Bialek,et al.  Diffusion and scaling during early embryonic pattern formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  W. Gehring,et al.  Localized expression of sloppy paired protein maintains the polarity of Drosophila parasegments. , 1994, Genes & development.

[56]  D. Kirschner,et al.  A methodology for performing global uncertainty and sensitivity analysis in systems biology. , 2008, Journal of theoretical biology.

[57]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[58]  Leon Glass,et al.  Reverse Engineering the Gap Gene Network of Drosophila melanogaster , 2006, PLoS Comput. Biol..

[59]  Xin He,et al.  Thermodynamics-Based Models of Transcriptional Regulation by Enhancers: The Roles of Synergistic Activation, Cooperative Binding and Short-Range Repression , 2010, PLoS Comput. Biol..

[60]  Michael Hecker,et al.  Gene regulatory network inference: Data integration in dynamic models - A review , 2009, Biosyst..

[61]  Gregory T. Reeves,et al.  Biological Systems from an Engineer's Point of View , 2009, PLoS biology.

[62]  J. Keasling,et al.  Mathematical Model of the lac Operon: Inducer Exclusion, Catabolite Repression, and Diauxic Growth on Glucose and Lactose , 1997, Biotechnology progress.

[63]  M. Levine,et al.  The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. , 1992, Genes & development.

[64]  Madalena Chaves,et al.  Robustness and fragility of Boolean models for genetic regulatory networks. , 2005, Journal of theoretical biology.

[65]  D. Thieffry,et al.  A logical analysis of the Drosophila gap-gene system. , 2001, Journal of theoretical biology.

[66]  J. Griffith,et al.  Mathematics of cellular control processes. I. Negative feedback to one gene. , 1968, Journal of theoretical biology.

[67]  M. A. Shea,et al.  The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation. , 1985, Journal of molecular biology.

[68]  Rainer Spang,et al.  Inferring cellular networks – a review , 2007, BMC Bioinformatics.

[69]  Xin Zhou,et al.  tCal: transcriptional probability calculator using thermodynamic model , 2008, Bioinform..

[70]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[71]  J. Mahaffy,et al.  Stability analysis for a mathematical model of the lac operon , 1999 .

[72]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[73]  P. Reed,et al.  Hydrology and Earth System Sciences Discussions Comparing Sensitivity Analysis Methods to Advance Lumped Watershed Model Identification and Evaluation , 2022 .

[74]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[75]  Michael C. Mackey,et al.  Dynamic behavior in mathematical models of the tryptophan operon. , 2001, Chaos.

[76]  A. K. Sen,et al.  Dynamic analysis of genetic control and regulation of amino acid synthesis: The tryptophan operon in Escherichia coli , 1990, Biotechnology and bioengineering.

[77]  David H. Sharp,et al.  Mechanism of eve stripe formation , 1995, Mechanisms of Development.

[78]  Brian Ingalls,et al.  Sensitivity analysis: from model parameters to system behaviour. , 2008, Essays in biochemistry.

[79]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[80]  Necmettin Yildirim,et al.  Modeling operon dynamics: the tryptophan and lactose operons as paradigms. , 2004, Comptes rendus biologies.

[81]  Ahmet Ay,et al.  Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila embryo , 2010, Molecular systems biology.

[82]  M. Mackey,et al.  Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data. , 2003, Biophysical journal.

[83]  Thomas Weise,et al.  Global Optimization Algorithms -- Theory and Application , 2009 .

[84]  M. Levine,et al.  The gap protein knirps mediates both quenching and direct repression in the Drosophila embryo. , 1996, The EMBO journal.

[85]  S. Leibler,et al.  DNA looping and physical constraints on transcription regulation. , 2003, Journal of molecular biology.

[86]  Charless C. Fowlkes,et al.  Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution II: dynamics , 2006, Genome Biology.

[87]  Jose M. G. Vilar,et al.  Modeling network dynamics: the lac operon, a case study , 2004 .

[88]  Johannes Jaeger,et al.  Pattern formation and nuclear divisions are uncoupled in Drosophila segmentation: comparison of spatially discrete and continuous models , 2004 .

[89]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.

[90]  Jaap A. Kaandorp,et al.  Efficient parameter estimation for spatio-temporal models of pattern formation: case study of Drosophila melanogaster , 2007, Bioinform..

[91]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[92]  R. D. Bliss,et al.  Role of feedback inhibition in stabilizing the classical operon. , 1982, Journal of theoretical biology.

[93]  J. Griffith Mathematics of cellular control processes. II. Positive feedback to one gene. , 1968, Journal of theoretical biology.