Spatial frequency adaptation and contrast gain control

[1]  J. Gibson,et al.  Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies , 1937 .

[2]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[3]  Solomon Lefschetz,et al.  Differential Equations: Geometric Theory , 1958 .

[4]  I. Howard,et al.  Human Spatial Orientation , 1966 .

[5]  A Pantle,et al.  Size-Detecting Mechanisms in Human Vision , 1968, Science.

[6]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[7]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[8]  C. Blakemore,et al.  The perceived spatial frequency shift: evidence for frequency‐selective neurones in the human brain , 1970, The Journal of physiology.

[9]  J. Willems,et al.  Stability theory of dynamical systems , 1970 .

[10]  C. Blakemore,et al.  Lateral Inhibition between Orientation Detectors in the Human Visual System , 1970, Nature.

[11]  F. Campbell,et al.  The tilt after-effect: a fresh look. , 1971, Vision research.

[12]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[13]  Stephen Grossberg,et al.  Contour Enhancement, Short Term Memory, and Constancies in Reverberating Neural Networks , 1973 .

[14]  D. Tolhurst,et al.  Psychophysical evidence for sustained and transient detectors in human vision , 1973, The Journal of physiology.

[15]  J Nachmias,et al.  Letter: Grating contrast: discrimination may be better than detection. , 1974, Vision research.

[16]  Quick Rf A vector-magnitude model of contrast detection. , 1974 .

[17]  H R Wilson,et al.  A synaptic model for spatial frequency adaptation. , 1975, Journal of theoretical biology.

[18]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[19]  A. Watson,et al.  Patterns of temporal interaction in the detection of gratings , 1977, Vision Research.

[20]  K. D. Valois Spatial frequency adaptation can enhance contrast sensitivity , 1977, Vision Research.

[21]  A. Sillito Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. , 1979, The Journal of physiology.

[22]  E. Kandel Small systems of neurons. , 1979, Scientific American.

[23]  J. Bergen,et al.  A four mechanism model for threshold spatial vision , 1979, Vision Research.

[24]  A. Watson Probability summation over time , 1979, Vision Research.

[25]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[26]  H. Wilson Spatiotemporal characterization of a transient mechanism in the human visual system , 1980, Vision Research.

[27]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[28]  G. Legge A power law for contrast discrimination , 1981, Vision Research.

[29]  J. Robson,et al.  Probability summation and regional variation in contrast sensitivity across the visual field , 1981, Vision Research.

[30]  Jerome A. Feldman,et al.  Connectionist Models and Their Properties , 1982, Cogn. Sci..

[31]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.

[32]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[33]  H. Wilson,et al.  Spatial frequency tuning of orientation selective units estimated by oblique masking , 1983, Vision Research.

[34]  H. Wilson,et al.  Temporal characteristics of visual channels measured by masking (A) , 1984 .

[35]  Hugh R. Wilson,et al.  Contrast matching data predicted from contrast increment thresholds , 1984, Vision Research.

[36]  Jeremy M. Wolfe,et al.  Short test flashes produce large tilt aftereffects , 1984, Vision Research.

[37]  Arthur Bradley,et al.  The effects of large orientation and spatial frequency differences on spatial discriminations , 1984, Vision Research.

[38]  H. Wilson,et al.  Orientation bandwidths of spatial mechanisms measured by masking. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[39]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985 .

[40]  S. R. Lehky,et al.  Temporal properties of visual channels measured by masking. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[41]  J. Bergen,et al.  Prediction of flicker sensitivities from temporal three-pulse data , 1985, Vision Research.

[42]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[43]  D. Regan,et al.  Postadaptation orientation discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[44]  Mark W. Greenlee,et al.  Saturation of the tilt aftereffect , 1987, Vision Research.

[45]  Mark W. Greenlee,et al.  Interactions among spatial frequency and orientation channels adapted concurrently , 1988, Vision Research.

[46]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[47]  F. Heitger,et al.  The functional role of contrast adaptation , 1988, Vision Research.

[48]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[49]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain , 1989, Visual Neuroscience.

[50]  H. Barlow Conditions for versatile learning, Helmholtz's unconscious inference, and the task of perception , 1990, Vision Research.

[51]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[52]  A. B. Bonds,et al.  Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex , 1991, Vision Research.

[53]  J. Ross,et al.  Contrast adaptation and contrast masking in human vision , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[54]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[55]  Mark W. Greenlee,et al.  The time course of adaptation to spatial contrast , 1991, Vision Research.

[56]  D. Heeger Nonlinear model of neural responses in cat visual cortex. , 1991 .

[57]  J P Thomas,et al.  Effect of pattern adaptation on spatial frequency discrimination. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[58]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[59]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.