Generic 4 ◊ 4 Two Person Games Have at Most 15
暂无分享,去创建一个
[1] William Stanford,et al. A Note on the Probability of k Pure Nash Equilibria in Matrix Games , 1995 .
[2] B. Grünbaum,et al. An enumeration of simplicial 4-polytopes with 8 vertices , 1967 .
[3] L. Shapley. A note on the Lemke-Howson algorithm , 1974 .
[4] Melvin Dresher,et al. PROBABILITY OF A PURE EQUILIBRIUM POINT IN n-PERSON GAMES , 1970 .
[5] G. Ziegler. Lectures on Polytopes , 1994 .
[6] M. Shubik,et al. On the Number of Nash Equilibria in a Bimatrix Game , 1994 .
[7] Andrew McLennan,et al. The Maximal Generic Number of Pure Nash Equilibria , 1997 .
[8] Bernhard von Stengel. New lower bounds for the number of equilibria in bimatrix games , 1997 .
[9] Andrew McLennan,et al. The Maximal Number of Regular Totally Mixed Nash Equilibria , 1997 .
[10] J. Harsanyi. Oddness of the number of equilibrium points: A new proof , 1973 .
[11] William Stanford,et al. The Limit Distribution of Pure Strategy Nash Equilibria in Symmetric Bimatrix Games , 1996, Math. Oper. Res..
[12] Ennio Stacchetti,et al. A Bound on the Proportion of Pure Strategy Equilibria in Generic Games , 1993, Math. Oper. Res..