On Pointwise Exponentially Weighted Estimates for the Boltzmann Equation

In this paper we prove propagation in time of weighted $L^\infty$ bounds for solutions to the non-cutoff homogeneous Boltzmann equation that satisfy propagation in time of weighted $L^1$ bounds. To emphasize that the propagation in time of weighted $L^{\infty}$ bounds relies on the propagation in time of weighted $L^1$ bounds, we express our main result using certain general weights. Consequently we apply the main result to cases of exponential and Mittag-Leffler weights, for which propagation in time of weighted $L^1$ bounds holds.

[1]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[2]  B. Wennberg Regularity in the Boltzmann equation and the Radon transform , 1994 .

[3]  Stéphane Mischler,et al.  On the spatially homogeneous Boltzmann equation , 1999 .

[4]  C. Villani Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation wi , 1999 .

[5]  François Golse,et al.  On a model Boltzmann equation without angular cutoff , 2000 .

[6]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[7]  Bernt Wennberg,et al.  Smoothness of the Solution of the Spatially Homogeneous Boltzmann Equation without Cutoff , 2005 .

[8]  L. Desvillettes Regularization properties of the 2-dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules , 1997 .

[9]  Laurent Desvillettes,et al.  About the regularizing properties of the non-cut-off Kac equation , 1995 .

[10]  Cl'ement Mouhot Rate of Convergence to Equilibrium for the Spatially Homogeneous Boltzmann Equation with Hard Potentials , 2006 .

[11]  Ricardo Alonso,et al.  A New Approach to the Creation and Propagation of Exponential Moments in the Boltzmann Equation , 2013 .

[12]  Radjesvarane Alexandre,et al.  Entropy Dissipation and Long-Range Interactions , 2000 .

[13]  A. Bobylev,et al.  Moment inequalities for the boltzmann equation and applications to spatially homogeneous problems , 1997 .

[14]  Chao-Jiang Xu,et al.  The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential , 2010, 1007.0304.

[15]  B. Wennberg On moments and uniqueness for solutions to the space homogeneous Boltzmann equation , 1994 .

[16]  T. Goudon On boltzmann equations and fokker—planck asymptotics: Influence of grazing collisions , 1997 .

[17]  A. Bobylev,et al.  Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwellian gas , 1984 .

[18]  Irene M. Gamba,et al.  On Mittag-Leffler Moments for the Boltzmann Equation for Hard Potentials Without Cutoff , 2018, SIAM J. Math. Anal..

[19]  Cl'ement Mouhot,et al.  On measure solutions of the Boltzmann equation, part I: Moment production and stability estimates , 2011, 1102.0373.

[20]  Irene M. Gamba,et al.  Moment Inequalities and High-Energy Tails for Boltzmann Equations with Inelastic Interactions , 2004 .

[21]  Radjesvarane Alexandre,et al.  On the Boltzmann equation for long‐range interactions , 2002 .

[22]  S. Ukai Local solutions in gevrey classes to the nonlinear Boltzmann equation without cutoff , 1984 .

[23]  Remarks on 3D Boltzmann linear equation without cutoff , 1999 .

[24]  B. Wennberg Entropy dissipation and moment production for the Boltzmann equation , 1997 .

[25]  Philip T. Gressman,et al.  Global classical solutions of the Boltzmann equation without angular cut-off , 2009, 0912.0888.

[26]  Cédric Villani,et al.  On a New Class of Weak Solutions to the Spatially Homogeneous Boltzmann and Landau Equations , 1998 .

[27]  Leif Arkeryd,et al.  Intermolecular forces of infinite range and the Boltzmann equation , 1981 .

[28]  T. Carleman,et al.  Problèmes mathématiques dans la théorie cinétique des gaz , 1957 .

[29]  Laurent Desvillettes,et al.  Some applications of the method of moments for the homogeneous Boltzmann and Kac equations , 1993 .

[30]  C. Villani,et al.  Upper Maxwellian Bounds for the Spatially Homogeneous Boltzmann Equation , 2007 .

[31]  Chao-Jiang Xu,et al.  Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff , 2011, 1104.5648.

[32]  T. Elmroth Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range , 1983 .

[33]  L. Arkeryd L∞ estimates for the space-homogeneous Boltzmann equation , 1983 .

[34]  Pierre-Louis Lions,et al.  On Boltzmann and Landau equations , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[35]  Leif Arkeryd,et al.  On the Boltzmann equation , 1972 .

[36]  L. Silvestre A New Regularization Mechanism for the Boltzmann Equation Without Cut-Off , 2014, 1412.4706.

[37]  Chao-Jiang Xu,et al.  The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential , 2010, 1005.0447.

[38]  Harold Grad,et al.  Asymptotic Theory of the Boltzmann Equation , 1963 .

[39]  Bernt Wennberg,et al.  The Povzner inequality and moments in the Boltzmann equation , 1996 .