Efficient pricing of discrete Asian options

Asian options are popular path-dependent financial derivatives. This paper uses lattices to price fixed-strike European-style Asian options that are discretely monitored. The algorithm proposed can also be applied to floating-strike Asian options as well because fixed-strike and floating-strike Asian options are related through an equation. The discretely monitored version is usually found in practice instead of the continuously monitored version usually encountered in the literature. This paper presents the first provably quadratic-time convergent lattice algorithm for pricing fixed-strike European-style discretely monitored Asian options. It is the most efficient lattice algorithm with convergence guarantees. The algorithm relies on the Lagrange multipliers to choose the number of states for each node of the lattice. Extensive numerical experiments and comparisons with many existing numerical methods confirm the performance claims and the competitiveness of our algorithm. This result places fixed-strike European-style discretely monitored Asian options in the same complexity class as vanilla options.

[1]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[2]  Gianluca Fusai Pricing Asian options via Fourier and Laplace transforms , 2004 .

[3]  J. Barraquand,et al.  PRICING OF AMERICAN PATH‐DEPENDENT CONTINGENT CLAIMS , 1996 .

[4]  K. Sandmann,et al.  Pricing Bounds on Asian Options , 2003, Journal of Financial and Quantitative Analysis.

[5]  Michael Curran Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price , 1994 .

[6]  T. Vorst Prices and Hedge Ratios of Average Exchange Rate Options , 1992 .

[7]  V. Henderson,et al.  On the equivalence of floating- and fixed-strike Asian options , 2002, Journal of Applied Probability.

[8]  S. Posner,et al.  Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution , 1998 .

[9]  S. Turnbull,et al.  A Quick Algorithm for Pricing European Average Options , 1991, Journal of Financial and Quantitative Analysis.

[10]  Tim W. Klassen Simple, Fast and Flexible Pricing of Asian Options , 2000 .

[11]  François Dubois,et al.  Efficient Pricing of Asian Options by the PDE Approach , 2004 .

[12]  Jin E. Zhang Pricing continuously sampled Asian options with perturbation method , 2003 .

[13]  Peter A. Forsyth,et al.  Discrete Asian barrier options , 1999 .

[14]  Lenos Trigeorgis,et al.  A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments , 1991, Journal of Financial and Quantitative Analysis.

[15]  Chi-Ning Wu,et al.  On accurate and provably efficient GARCH option pricing algorithms , 2005 .

[16]  Kuan-Wen Chen,et al.  Accurate pricing formulas for Asian options , 2007, Appl. Math. Comput..

[17]  Alan G. White,et al.  Efficient Procedures for Valuing European and American Path-Dependent Options , 1993 .

[18]  E. Bender Asymptotic Methods in Enumeration , 1974 .

[19]  Edmond Levy Pricing European average rate currency options , 1992 .

[20]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[21]  Rajeev Motwani,et al.  Accurate approximations for Asian options , 2000, SODA '00.

[22]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[23]  Yuh-Dauh Lyuu,et al.  A convergent quadratic-time lattice algorithm for pricing European-style Asian options , 2007, Appl. Math. Comput..

[24]  Nengjiu Ju Pricing Asian and basket options via Taylor expansion , 2002 .

[25]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[26]  P. Wilmott,et al.  A Note on Average Rate Options with Discrete Sampling , 1995, SIAM J. Appl. Math..

[27]  J. Ingersoll Theory of Financial Decision Making , 1987 .

[28]  M. Fu,et al.  Pricing Continuous Asian Options: A Comparison of Monte Carlo and Laplace Transform Inversion Methods , 1998 .

[29]  Peter H. Ritchken,et al.  The valuation of path dependent contracts on the average , 1993 .

[30]  Peter A. Forsyth,et al.  Convergence of numerical methods for valuing path-dependent options using interpolation , 2002 .

[31]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[32]  Tian-Shyr Dai,et al.  An efficient convergent lattice algorithm for European Asian options , 2005, Appl. Math. Comput..

[33]  J. Vecer A new PDE approach for pricing arithmetic average Asian options , 2001 .

[34]  Philip Protter,et al.  An analysis of a least squares regression method for American option pricing , 2002, Finance Stochastics.

[35]  L. Bouaziz,et al.  The pricing of forward-starting asian options , 1994 .

[36]  Antonino Zanette,et al.  Pricing American barrier options with discrete dividends by binomial trees , 2009 .

[37]  L. Rogers,et al.  The value of an Asian option , 1995, Journal of Applied Probability.

[38]  G. Thompson Fast narrow bounds on the value of Asian options , 2002 .

[39]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[40]  Eric Benhamou Fast Fourier Transform for Discrete Asian Options , 2002 .

[41]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .