A GPU-based hyperbolic SVD algorithm
暂无分享,去创建一个
[1] V. Hari,et al. On Jacobi methods for singular value decompositions , 1987 .
[2] J. Bunch,et al. Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .
[3] Roy Mathias. Analysis of Algorithms for Orthogonalizing Products of Unitary Matrices , 1996, Numer. Linear Algebra Appl..
[4] Vjeran Hari,et al. Block-oriented J-Jacobi methods for Hermitian matrices , 2010 .
[5] P. J. Narayanan,et al. Singular value decomposition on GPU using CUDA , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.
[6] James Demmel,et al. IEEE Standard for Floating-Point Arithmetic , 2008 .
[7] R. Brent,et al. The Solution of Singular-Value and Symmetric Eigenvalue Problems on Multiprocessor Arrays , 1985 .
[8] Vjeran Hari,et al. On quadratic convergence bounds for theJ-symmetric Jacobi method , 1993 .
[9] Mary Hall,et al. Takagi Factorization on GPU using CUDA , 2011 .
[10] Ivan Slapničar,et al. Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD , 2003 .
[11] Sanja Singer. Indefinite QR Factorization , 2006 .
[12] Ivan Slapničar,et al. Componentwise Analysis of Direct Factorization of Real Symmetric and Hermitian Matrices , 1998 .
[13] Vedran Novakovic,et al. Novel modifications of parallel Jacobi algorithms , 2011, Numerical Algorithms.
[14] H. Zha. A note on the existence of the hyperbolic singular value decomposition , 1996 .
[15] Franklin T. Luk,et al. On parallel Jacobi orderings , 1989 .
[16] Ivan Slapničar,et al. Perturbations of the eigenprojections of a factorized Hermitian matrix , 1995 .
[17] K. Veselié. A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .
[18] Franklin T. Luk,et al. A Proof of Convergence for Two Parallel Jacobi SVD Algorithms , 1989, IEEE Trans. Computers.
[19] A. Sameh. On Jacobi and Jacobi-like algorithms for a parallel computer , 1971 .
[20] Vedran Novakovic,et al. Three-level parallel J-Jacobi algorithms for Hermitian matrices , 2010, Appl. Math. Comput..