A GPU-based hyperbolic SVD algorithm

A one-sided Jacobi hyperbolic singular value decomposition (HSVD) algorithm, using a massively parallel graphics processing unit (GPU), is developed. The algorithm also serves as the final stage of solving a symmetric indefinite eigenvalue problem. Numerical testing demonstrates the gains in speed and accuracy over sequential and MPI-parallelized variants of similar Jacobi-type HSVD algorithms. Finally, possibilities of hybrid CPU–GPU parallelism are discussed.

[1]  V. Hari,et al.  On Jacobi methods for singular value decompositions , 1987 .

[2]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[3]  Roy Mathias Analysis of Algorithms for Orthogonalizing Products of Unitary Matrices , 1996, Numer. Linear Algebra Appl..

[4]  Vjeran Hari,et al.  Block-oriented J-Jacobi methods for Hermitian matrices , 2010 .

[5]  P. J. Narayanan,et al.  Singular value decomposition on GPU using CUDA , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[6]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[7]  R. Brent,et al.  The Solution of Singular-Value and Symmetric Eigenvalue Problems on Multiprocessor Arrays , 1985 .

[8]  Vjeran Hari,et al.  On quadratic convergence bounds for theJ-symmetric Jacobi method , 1993 .

[9]  Mary Hall,et al.  Takagi Factorization on GPU using CUDA , 2011 .

[10]  Ivan Slapničar,et al.  Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD , 2003 .

[11]  Sanja Singer Indefinite QR Factorization , 2006 .

[12]  Ivan Slapničar,et al.  Componentwise Analysis of Direct Factorization of Real Symmetric and Hermitian Matrices , 1998 .

[13]  Vedran Novakovic,et al.  Novel modifications of parallel Jacobi algorithms , 2011, Numerical Algorithms.

[14]  H. Zha A note on the existence of the hyperbolic singular value decomposition , 1996 .

[15]  Franklin T. Luk,et al.  On parallel Jacobi orderings , 1989 .

[16]  Ivan Slapničar,et al.  Perturbations of the eigenprojections of a factorized Hermitian matrix , 1995 .

[17]  K. Veselié A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .

[18]  Franklin T. Luk,et al.  A Proof of Convergence for Two Parallel Jacobi SVD Algorithms , 1989, IEEE Trans. Computers.

[19]  A. Sameh On Jacobi and Jacobi-like algorithms for a parallel computer , 1971 .

[20]  Vedran Novakovic,et al.  Three-level parallel J-Jacobi algorithms for Hermitian matrices , 2010, Appl. Math. Comput..