Magnetic domain wall skyrmions

It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya interaction (DMI), which modifies the internal structure of magnetic domain walls (DWs) to favor N\'eel- over Bloch-type configurations. However, the impact of such a transition on the structure and stability of internal DW defects (e.g., vertical Bloch lines) needs to be explored. We present a combination of analytical and micromagnetic calculations to describe a type of topological excitation called a DW skyrmion characterized by a ${360}^{\ensuremath{\circ}}$ rotation of the internal magnetization in a Dzyaloshinskii DW. We further propose a method to identify DW skyrmions experimentally using Fresnel-mode Lorentz transmission electron microscopy; simulated images of DW skyrmions using this technique are presented based on the micromagnetic results.

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  J. Shaw,et al.  Disentangling factors governing Dzyaloshinskii domain-wall creep in Co/Ni thin films using PtxIr1−x seed layers , 2018, Physical Review B.

[4]  C. Mewes,et al.  Inhomogeneous Perpendicular Magnetic Anisotropy as a Source of Higher-order Quasistatic and Dynamic Anisotropies , 2018 .

[5]  H. Yuan,et al.  A theory on skyrmion size , 2018, 2018 IEEE International Magnetic Conference (INTERMAG).

[6]  V. Sokalski,et al.  Dispersive Stiffness of Dzyaloshinskii Domain Walls. , 2016, Physical review letters.

[7]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[8]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[9]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[10]  A. Hubert,et al.  Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .

[11]  C. Marrows,et al.  Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films , 2014 .

[12]  S. B. Gudnason,et al.  Domain wall Skyrmions , 2014, 1403.1245.

[13]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[14]  L. Buda-Prejbeanu,et al.  Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks. , 2013, Physical review letters.

[15]  A. Hoffmann Spin Hall Effects in Metals , 2013, IEEE Transactions on Magnetics.

[16]  Paul Jennings,et al.  The dynamics of domain wall Skyrmions , 2013, 1305.2869.

[17]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[18]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[19]  C. Chien,et al.  Extended Skyrmion phase in epitaxial FeGe(111) thin films. , 2012, Physical review letters.

[20]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[21]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[22]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[23]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[24]  Michael J. Donahue,et al.  Exchange energy formulations for 3D micromagnetics , 2004 .

[25]  Ya-Xiang Yuan,et al.  Alternate minimization gradient method , 2003 .

[26]  M. Beleggia,et al.  Electron-optical phase shift of magnetic nanoparticles I. Basic concepts , 2003 .

[27]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[28]  J. Hirsch Spin Hall Effect , 1999, cond-mat/9906160.

[29]  J. Ferré,et al.  Bloch wall dynamics in ultrathin ferromagnetic films , 1998 .

[30]  K. Nugent,et al.  Noninterferometric phase imaging with partially coherent light , 1998 .

[31]  G. Sawatzky,et al.  Journal of Physics and Chemistry of Solids 40th Anniversary - Preface , 1998 .

[32]  A. Thiaville The demagnetizing field inside a domain wall , 1995 .

[33]  Physical Review Letters 63 , 1989 .

[34]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[35]  Hideki Kawahara,et al.  Bloch line memory, an approach to gigabit memory , 1984 .

[36]  S. Konishi A new-ultra-density solid state memory: Bloch line memory , 1983 .

[37]  J. Slonczewski,et al.  Theory of Bloch‐line and Bloch‐wall motion , 1974 .

[38]  J. Slonczewski,et al.  Effect of Bloch Lines on Magnetic Domain-Wall Mobility , 1972 .

[39]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[40]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[41]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .