Data-mining of in-situ TEM experiments: Towards understanding nanoscale fracture

[1]  S. Sandfeld,et al.  Data-Mining of In-Situ TEM Experiments: On the Dynamics of Dislocations in CoCrFeMnNi Alloys , 2022, SSRN Electronic Journal.

[2]  S. Sandfeld,et al.  Orientation-related twinning and dislocation glide in a Cantor High Entropy Alloy at room and cryogenic temperature studied by in situ TEM straining , 2021, 2108.10010.

[3]  P. Calyam,et al.  Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning , 2021, npj Computational Materials.

[4]  Phillip M. Maffettone,et al.  Deep learning for visualization and novelty detection in large X-ray diffraction datasets , 2021, npj Computational Materials.

[5]  F. Boughorbel,et al.  Deep Neural Networks for Analysis of Microscopy Images—Synthetic Data Generation and Adaptive Sampling , 2021, Crystals.

[6]  Luca Heltai,et al.  The deal.II finite element library: Design, features, and insights , 2019, Comput. Math. Appl..

[7]  R. Rudd,et al.  Observations of grain boundary phase transformations in an elemental metal , 2020, Nature.

[8]  D. Schryvers,et al.  Dislocation structures and the role of grain boundaries in cyclically deformed Ni micropillars , 2020, Materials Science and Engineering: A.

[9]  Wei Chen,et al.  High-throughput computational discovery of In2Mn2O7 as a high Curie temperature ferromagnetic semiconductor for spintronics , 2019, npj Computational Materials.

[10]  T. B. Britton,et al.  New techniques for imaging and identifying defects in electron microscopy , 2019, MRS Bulletin.

[11]  M. Demura,et al.  Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures , 2018, Scientific Reports.

[12]  M. Sprung,et al.  Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging , 2017, Nature Energy.

[13]  Giacomo Po,et al.  A non-singular theory of dislocations in anisotropic crystals , 2017, 1706.00828.

[14]  A. Wilkinson,et al.  Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction. , 2016, Ultramicroscopy.

[15]  Andrew M. Minor,et al.  Local and transient nanoscale strain mapping during in situ deformation , 2016 .

[16]  Benoit Devincre,et al.  Consistent formulation for the Discrete-Continuous Model: Improving complex dislocation dynamics simulations , 2016 .

[17]  Johannes J. Möller,et al.  On the influence of crack front curvature on the fracture behavior of nanoscale cracks , 2015 .

[18]  Peter Gumbsch,et al.  Atomistic aspects of fracture , 2015, International Journal of Fracture.

[19]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[20]  Dierk Raabe,et al.  Dislocation density distribution around an wedge indent in single- crystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments , 2014 .

[21]  M. Legros In situ mechanical TEM: Seeing and measuring under stress with electrons , 2014 .

[22]  Michael Zaiser,et al.  From systems of discrete dislocations to a continuous field description: stresses and averaging aspects , 2013 .

[23]  H. Clemens,et al.  Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys , 2013 .

[24]  W. Curtin,et al.  Atomic mechanism and prediction of hydrogen embrittlement in iron. , 2013, Nature materials.

[25]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[26]  A. Minor,et al.  In situ nano-compression testing of irradiated copper , 2011, Nature materials.

[27]  W. Gerberich,et al.  Smaller is tougher , 2011 .

[28]  T. Ungár,et al.  Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis , 2010 .

[29]  E. Arzt,et al.  Strength Effects in Micropillars of a Dispersion Strengthened Superalloy , 2010 .

[30]  H. Espinosa,et al.  MEMS for In Situ Testing—Handling, Actuation, Loading, and Displacement Measurements , 2010 .

[31]  Jun Sun,et al.  Strong crystal size effect on deformation twinning , 2010, Nature.

[32]  Satoshi Hata,et al.  Crack tip dislocations revealed by electron tomography in silicon single crystal , 2008 .

[33]  D. Warner,et al.  Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. , 2007, Nature materials.

[34]  T. Belytschko,et al.  A First Course in Finite Elements: Belytschko/A First Course in Finite Elements , 2007 .

[35]  T. Belytschko,et al.  A first course in finite elements , 2007 .

[36]  A. Minor,et al.  A new view of the onset of plasticity during the nanoindentation of aluminium , 2006, Nature materials.

[37]  Christopher R. Weinberger,et al.  A non-singular continuum theory of dislocations , 2006 .

[38]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[39]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[40]  Marcella Giovannini,et al.  Self-organized growth of nanostructure arrays on strain-relief patterns , 1998, Nature.

[41]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[42]  J. Smith,et al.  A Comparison of the Elastic Constants of Chromium as Determined from Diffuse X‐Ray and Ultrasonic Techniques , 1963 .