High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation

In this contribution, a strategy is proposed for uncoupling geometrical description and approximation with the X-FEM. The strategy is based on an uniform coarse mesh that defines a high order approximation of the mechanical fields and an adapted mesh that defines the geometrical features by means of levelsets. The connection between the geometry and the approximation is obtained by sharing the quadtree trees of the two meshes. Numerical examples involving level-set based parts, convergence studies, mechanical computations and numerical homogenization show good promise for this approach.

[1]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[2]  I. Babuska,et al.  Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids , 2003 .

[3]  Nicolas Moës,et al.  Studied X-FEM enrichment to handle material interfaces with higher order finite element , 2010 .

[4]  N. Moës,et al.  Application de X-FEM et des level-sets à l'homogénéisation de matériaux aléatoires caractérisés par imagerie numérique , 2007 .

[5]  Michael Griebel,et al.  A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .

[6]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[7]  J. Remacle,et al.  Efficient visualization of high‐order finite elements , 2007 .

[8]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[9]  Xiangmin Jiao,et al.  hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .

[10]  T. Belytschko,et al.  Strong and weak arbitrary discontinuities in spectral finite elements , 2005 .

[11]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[12]  T. Coupez,et al.  Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing , 2011, J. Comput. Phys..

[13]  Grégory Legrain,et al.  Comparison of two Computational Approaches for Image-Based Micromechanical Modeling , 2010 .

[14]  Julien Yvonnet,et al.  A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM , 2011 .

[15]  Grégory Legrain,et al.  An X‐FEM and level set computational approach for image‐based modelling: Application to homogenization , 2011 .

[16]  Hamouine Abdelmadjid,et al.  A state-of-the-art review of the X-FEM for computational fracture mechanics , 2009 .

[17]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[18]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[19]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[20]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[21]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[22]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[23]  D. Chopp,et al.  Modelling crack growth by level sets , 2013 .

[24]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[25]  Grégory Legrain,et al.  Image-Based Computational Homogenization of Random Materials using Level Sets and X-FEM , 2008 .

[26]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[27]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[28]  Ted Belytschko,et al.  An extended finite element method with higher-order elements for curved cracks , 2003 .

[29]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[30]  Nicolas Moës,et al.  Higher order X-FEM for curved cracks , 2010 .

[31]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[32]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[33]  Thomas-Peter Fries,et al.  Higher‐order XFEM for curved strong and weak discontinuities , 2009 .

[34]  Olivier Pironneau,et al.  A FICTITIOUS DOMAIN BASED GENERAL PDE SOLVER , 2004 .

[35]  Benoit Prabel,et al.  Level set X‐FEM non‐matching meshes: application to dynamic crack propagation in elastic–plastic media , 2007 .

[36]  I. I. Bakelʹman,et al.  Geometric Analysis and Nonlinear Partial Differential Equations , 1993 .

[37]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[38]  Isaac Harari,et al.  Analysis of an efficient finite element method for embedded interface problems , 2010 .

[39]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[40]  Stéphane Roux,et al.  Three dimensional experimental and numerical multiscale analysis of a fatigue crack , 2010 .

[41]  D. Chopp,et al.  Three‐dimensional non‐planar crack growth by a coupled extended finite element and fast marching method , 2008 .

[42]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[43]  Dominique Jeulin,et al.  Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry , 2006 .

[44]  C. Duarte,et al.  Generalized finite element enrichment functions for discontinuous gradient fields , 2010 .

[45]  Ernst Rank,et al.  Finite cell method , 2007 .

[46]  Isaac Harari,et al.  A bubble‐stabilized finite element method for Dirichlet constraints on embedded interfaces , 2007 .

[47]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[48]  Sofiane Guessasma,et al.  Modélisation numérique par une approche micromécanique du comportement de mousses solides alimentaires , 2009 .

[49]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[50]  R. Glowinski,et al.  Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .

[51]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[52]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[53]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[54]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[55]  Grégory Legrain,et al.  On the use of the extended finite element method with quadtree/octree meshes , 2011 .

[56]  A FAST METHOD OF NUMERICAL QUADRATURE FOR P-VERSION FINITE ELEMENT MATRICES , 1993 .