High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation
暂无分享,去创建一个
[1] P. Hansbo,et al. A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .
[2] I. Babuska,et al. Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids , 2003 .
[3] Nicolas Moës,et al. Studied X-FEM enrichment to handle material interfaces with higher order finite element , 2010 .
[4] N. Moës,et al. Application de X-FEM et des level-sets à l'homogénéisation de matériaux aléatoires caractérisés par imagerie numérique , 2007 .
[5] Michael Griebel,et al. A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .
[6] Ivo Babuška,et al. Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .
[7] J. Remacle,et al. Efficient visualization of high‐order finite elements , 2007 .
[8] P. George,et al. Mesh Generation: Application to Finite Elements , 2007 .
[9] Xiangmin Jiao,et al. hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .
[10] T. Belytschko,et al. Strong and weak arbitrary discontinuities in spectral finite elements , 2005 .
[11] T. Belytschko,et al. Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .
[12] T. Coupez,et al. Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing , 2011, J. Comput. Phys..
[13] Grégory Legrain,et al. Comparison of two Computational Approaches for Image-Based Micromechanical Modeling , 2010 .
[14] Julien Yvonnet,et al. A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM , 2011 .
[15] Grégory Legrain,et al. An X‐FEM and level set computational approach for image‐based modelling: Application to homogenization , 2011 .
[16] Hamouine Abdelmadjid,et al. A state-of-the-art review of the X-FEM for computational fracture mechanics , 2009 .
[17] Isaac Harari,et al. An efficient finite element method for embedded interface problems , 2009 .
[18] J. M. Thomas,et al. Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .
[19] J. Dolbow,et al. Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .
[20] D. Jeulin,et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .
[21] M. Ostoja-Starzewski. Material spatial randomness: From statistical to representative volume element☆ , 2006 .
[22] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[23] D. Chopp,et al. Modelling crack growth by level sets , 2013 .
[24] Antonio Huerta,et al. Imposing essential boundary conditions in mesh-free methods , 2004 .
[25] Grégory Legrain,et al. Image-Based Computational Homogenization of Random Materials using Level Sets and X-FEM , 2008 .
[26] T. Belytschko,et al. The extended/generalized finite element method: An overview of the method and its applications , 2010 .
[27] T. Belytschko,et al. MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .
[28] Ted Belytschko,et al. An extended finite element method with higher-order elements for curved cracks , 2003 .
[29] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[30] Nicolas Moës,et al. Higher order X-FEM for curved cracks , 2010 .
[31] Ernst Rank,et al. The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .
[32] Ernst Rank,et al. The finite cell method for three-dimensional problems of solid mechanics , 2008 .
[33] Thomas-Peter Fries,et al. Higher‐order XFEM for curved strong and weak discontinuities , 2009 .
[34] Olivier Pironneau,et al. A FICTITIOUS DOMAIN BASED GENERAL PDE SOLVER , 2004 .
[35] Benoit Prabel,et al. Level set X‐FEM non‐matching meshes: application to dynamic crack propagation in elastic–plastic media , 2007 .
[36] I. I. Bakelʹman,et al. Geometric Analysis and Nonlinear Partial Differential Equations , 1993 .
[37] I. Babuska,et al. The design and analysis of the Generalized Finite Element Method , 2000 .
[38] Isaac Harari,et al. Analysis of an efficient finite element method for embedded interface problems , 2010 .
[39] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[40] Stéphane Roux,et al. Three dimensional experimental and numerical multiscale analysis of a fatigue crack , 2010 .
[41] D. Chopp,et al. Three‐dimensional non‐planar crack growth by a coupled extended finite element and fast marching method , 2008 .
[42] T. Belytschko,et al. Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .
[43] Dominique Jeulin,et al. Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry , 2006 .
[44] C. Duarte,et al. Generalized finite element enrichment functions for discontinuous gradient fields , 2010 .
[45] Ernst Rank,et al. Finite cell method , 2007 .
[46] Isaac Harari,et al. A bubble‐stabilized finite element method for Dirichlet constraints on embedded interfaces , 2007 .
[47] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[48] Sofiane Guessasma,et al. Modélisation numérique par une approche micromécanique du comportement de mousses solides alimentaires , 2009 .
[49] Jean-François Remacle,et al. A computational approach to handle complex microstructure geometries , 2003 .
[50] R. Glowinski,et al. Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .
[51] Marc Duflot,et al. Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..
[52] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[53] I. Babuska,et al. Finite Element Analysis , 2021 .
[54] D. Schillinger,et al. An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .
[55] Grégory Legrain,et al. On the use of the extended finite element method with quadtree/octree meshes , 2011 .
[56] A FAST METHOD OF NUMERICAL QUADRATURE FOR P-VERSION FINITE ELEMENT MATRICES , 1993 .