Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community

In recent years, deep learning (DL), a rebranding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, and natural language processing. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV, e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should not only be aware of advancements such as DL, but also be leading researchers in this area. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools, and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as they relate to (i) inadequate data sets, (ii) human-understandable solutions for modeling physical phenomena, (iii) big data, (iv) nontraditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial, and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.042609]

[1]  Arnt-Borre Salberg,et al.  Detection of seals in remote sensing images using features extracted from deep convolutional neural networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[2]  Dong Yu,et al.  Deep Learning: Methods and Applications , 2014, Found. Trends Signal Process..

[3]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[4]  Anton Konushin,et al.  A SYSTEM FOR LARGE-SCALE AUTOMATIC TRAFFIC SIGN RECOGNITION AND MAPPING , 2013 .

[5]  Bin Wang,et al.  Deep Convolutional networks with superpixel segmentation for hyperspectral image classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[6]  Jin Zhao,et al.  Terrain classification with Polarimetric SAR based on Deep Sparse Filtering Network , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[7]  Mostafa Mehdipour-Ghazi,et al.  Plant identification using deep neural networks via optimization of transfer learning parameters , 2017, Neurocomputing.

[8]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[9]  Bo Li,et al.  3D fully convolutional network for vehicle detection in point cloud , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[10]  Reza Bosagh Zadeh,et al.  FusionNet: 3D Object Classification Using Multiple Data Representations , 2016, ArXiv.

[11]  Lorenzo Bruzzone,et al.  Deep feature representation for hyperspectral image classification , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[12]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  Zheng Zhang,et al.  MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems , 2015, ArXiv.

[14]  M. E. Winter Comparison of approaches for determining end-members in hyperspectral data , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[15]  Yao Yu,et al.  Road network extraction via deep learning and line integral convolution , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[16]  Stefano Ermon,et al.  Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping , 2015, AAAI.

[17]  Bo Du,et al.  Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art , 2016, IEEE Geoscience and Remote Sensing Magazine.

[18]  Qian Du,et al.  Integrating spectral and spatial information into deep convolutional Neural Networks for hyperspectral classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[19]  Geoffrey E. Hinton,et al.  Learning to Label Aerial Images from Noisy Data , 2012, ICML.

[20]  Aurélien Ducournau,et al.  Deep learning for ocean remote sensing: an application of convolutional neural networks for super-resolution on satellite-derived SST data , 2016, 2016 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS).

[21]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[22]  Naif Alajlan,et al.  Differential Evolution Extreme Learning Machine for the Classification of Hyperspectral Images , 2014, IEEE Geoscience and Remote Sensing Letters.

[23]  Junwei Han,et al.  A Survey on Object Detection in Optical Remote Sensing Images , 2016, ArXiv.

[24]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[25]  Bruno A. Olshausen,et al.  Learning Sparse Codes for Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[26]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[27]  Chao Li,et al.  Co-saliency detection via looking deep and wide , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Maoguo Gong,et al.  Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[29]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[30]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[31]  Luca Maria Gambardella,et al.  Flexible, High Performance Convolutional Neural Networks for Image Classification , 2011, IJCAI.

[32]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[33]  Bo Qu,et al.  Deep semantic understanding of high resolution remote sensing image , 2016, 2016 International Conference on Computer, Information and Telecommunication Systems (CITS).

[34]  S. Sachin Kumar,et al.  Deep Model for Classification of Hyperspectral image using Restricted Boltzmann Machine , 2014, ICONIAAC '14.

[35]  Nikos Komodakis,et al.  Building detection in very high resolution multispectral data with deep learning features , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[36]  Yann LeCun,et al.  Energy-based Generative Adversarial Network , 2016, ICLR.

[37]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[38]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[39]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[41]  Ethan Fetaya,et al.  StixelNet: A Deep Convolutional Network for Obstacle Detection and Road Segmentation , 2015, BMVC.

[42]  Asok Ray,et al.  Early Detection of Combustion Instability from Hi-speed Flame Images via Deep Learning and Symbolic Time Series Analysis , 2015, Annual Conference of the PHM Society.

[43]  Melba M. Crawford,et al.  Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning , 2014, IEEE Signal Processing Magazine.

[44]  Li Deng,et al.  A tutorial survey of architectures, algorithms, and applications for deep learning , 2014, APSIPA Transactions on Signal and Information Processing.

[45]  Jon Atli Benediktsson,et al.  On Understanding Big Data Impacts in Remotely Sensed Image Classification Using Support Vector Machine Methods , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[46]  Michael F. Goodchild,et al.  The convergence of GIS and social media: challenges for GIScience , 2011, Int. J. Geogr. Inf. Sci..

[47]  Xuchu Yu,et al.  Semi-supervised classification of hyperspectral imagery based on stacked autoencoders , 2016, International Conference on Digital Image Processing.

[48]  Jefersson Alex dos Santos,et al.  Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[49]  Bor-Chen Kuo,et al.  Feature Mining for Hyperspectral Image Classification , 2013, Proceedings of the IEEE.

[50]  Peter Glöckner,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2013 .

[51]  Jianhua Wang,et al.  Deep hierarchical representation and segmentation of high resolution remote sensing images , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[52]  Fachao Qin,et al.  Object-oriented ensemble classification for polarimetric SAR Imagery using restricted Boltzmann machines , 2017 .

[53]  Luisa Verdoliva,et al.  Land Use Classification in Remote Sensing Images by Convolutional Neural Networks , 2015, ArXiv.

[54]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Yanfei Zhong,et al.  Large patch convolutional neural networks for the scene classification of high spatial resolution imagery , 2016 .

[56]  Fei-Yue Wang,et al.  Traffic Flow Prediction With Big Data: A Deep Learning Approach , 2015, IEEE Transactions on Intelligent Transportation Systems.

[57]  Steven Verstockt,et al.  Hyperspectral Image Classification with Convolutional Neural Networks , 2015, ACM Multimedia.

[58]  Colin P. Schwegmann,et al.  Very deep learning for ship discrimination in Synthetic Aperture Radar imagery , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[59]  Yansheng Li,et al.  Unsupervised Spectral–Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification , 2015, IEEE Geoscience and Remote Sensing Letters.

[60]  Uwe Stilla,et al.  SEMANTIC SEGMENTATION OF AERIAL IMAGES WITH AN ENSEMBLE OF CNNS , 2016 .

[61]  Nasir M. Rajpoot,et al.  Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images , 2016, IEEE Trans. Medical Imaging.

[62]  Nan Yang,et al.  A review of road extraction from remote sensing images , 2016 .

[63]  Sen Jia,et al.  Convolutional neural networks for hyperspectral image classification , 2017, Neurocomputing.

[64]  Maoguo Gong,et al.  Three-Class Change Detection in Synthetic Aperture Radar Images Based on Deep Belief Network , 2015, BIC-TA.

[65]  Uwe Stilla,et al.  DEEP NEURAL NETWORKS FOR ABOVE-GROUND DETECTION IN VERY HIGH SPATIAL RESOLUTION DIGITAL ELEVATION MODELS , 2015 .

[66]  Claudia Notarnicola,et al.  Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data , 2015, Remote. Sens..

[67]  Jiwen Lu,et al.  PCANet: A Simple Deep Learning Baseline for Image Classification? , 2014, IEEE Transactions on Image Processing.

[68]  Gregory D. Hager,et al.  Beyond spatial pooling: Fine-grained representation learning in multiple domains , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Christian Debes,et al.  Automatic fusion and classification using random forests and features extracted with deep learning , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[71]  Ingmar Posner,et al.  Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks , 2016, AAAI.

[72]  Jia Cheng Ni,et al.  SAR automatic target recognition based on a visual cortical system , 2013, 2013 6th International Congress on Image and Signal Processing (CISP).

[73]  Vladimir Risojevic,et al.  Gabor Descriptors for Aerial Image Classification , 2011, ICANNGA.

[74]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[75]  Yingfeng Cai,et al.  Night-Time Vehicle Sensing in Far Infrared Image with Deep Learning , 2016, J. Sensors.

[76]  Jianxiong Xiao,et al.  DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[77]  Venu Govindaraju,et al.  Why Regularized Auto-Encoders learn Sparse Representation? , 2015, ICML.

[78]  Huadong Guo,et al.  Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks , 2014 .

[79]  David Bull,et al.  A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks , 2016 .

[80]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[81]  Liangpei Zhang,et al.  A universal remote sensing image quality improvement method with deep learning , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[82]  Björn Stenger,et al.  Detecting Change for Multi-View, Long-Term Surface Inspection , 2015, BMVC.

[83]  Jian Yao,et al.  S-CNN-BASED SHIP DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES , 2016 .

[84]  Konstantinos Karantzalos,et al.  BENCHMARKING DEEP LEARNING FRAMEWORKS FOR THE CLASSIFICATION OF VERY HIGH RESOLUTION SATELLITE MULTISPECTRAL DATA , 2016 .

[85]  Stacy L. Ozesmi,et al.  Satellite remote sensing of wetlands , 2002, Wetlands Ecology and Management.

[86]  Jamie Sherrah,et al.  Effective semantic pixel labelling with convolutional networks and Conditional Random Fields , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[87]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[88]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[89]  Yanfei Liu,et al.  SatCNN: satellite image dataset classification using agile convolutional neural networks , 2017 .

[90]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[91]  Chee Seng Chan,et al.  phi-LSTM: A Phrase-Based Hierarchical LSTM Model for Image Captioning , 2016, ACCV.

[92]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2015, CVPR.

[93]  Wei Wei,et al.  Bands Sensitive Convolutional Network for Hyperspectral Image Classification , 2016, ICIMCS.

[94]  Héctor F. Satizábal,et al.  Augmenting a convolutional neural network with local histograms - A case study in crop classification from high-resolution UAV imagery , 2016, ESANN.

[95]  Shanjun Mao,et al.  Spectral–spatial classification of hyperspectral images using deep convolutional neural networks , 2015 .

[96]  Chandan Roy,et al.  Cyclone track forecasting based on satellite images using artificial neural networks , 2009 .

[97]  Mohamed Dahmane,et al.  Object detection in pleiades images using deep features , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[98]  Nikolaos Doulamis,et al.  Deep supervised learning for hyperspectral data classification through convolutional neural networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[99]  Xiaogang Wang,et al.  A discriminative deep model for pedestrian detection with occlusion handling , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[100]  Fan Zhang,et al.  Deep Boltzmann Machines based vehicle recognition , 2014, The 26th Chinese Control and Decision Conference (2014 CCDC).

[101]  Sven Behnke,et al.  Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition , 2010, ICANN.

[102]  Pascal Kaiser Learning City Structures from Online Maps , 2016 .

[103]  Trevor Darrell,et al.  Sequence to Sequence -- Video to Text , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[104]  Chen Chen,et al.  Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine , 2014, Remote. Sens..

[105]  Jing Zhang,et al.  Hyperspectral image classification based on deep stacking network , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[106]  Francesco Visin,et al.  A guide to convolution arithmetic for deep learning , 2016, ArXiv.

[107]  S. Prasher,et al.  Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn , 2003 .

[108]  Antonio J. Plaza,et al.  Active learning based autoencoder for hyperspectral imagery classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[109]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[110]  Gang Wang,et al.  Spectral-spatial classification of hyperspectral image using autoencoders , 2013, 2013 9th International Conference on Information, Communications & Signal Processing.

[111]  Bolei Zhou,et al.  Object Detectors Emerge in Deep Scene CNNs , 2014, ICLR.

[112]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[113]  Wenhao Huang,et al.  Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning , 2014, IEEE Transactions on Intelligent Transportation Systems.

[114]  Haokui Zhang,et al.  Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network , 2017 .

[115]  Jiming Li,et al.  Active learning for hyperspectral image classification with a stacked autoencoders based neural network , 2015, 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[116]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[117]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[118]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[119]  Xiaoqiang Lu,et al.  Scene Recognition by Manifold Regularized Deep Learning Architecture , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[120]  Alexandre Boulch,et al.  Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[121]  Youngwook Kim,et al.  Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks , 2016, IEEE Geoscience and Remote Sensing Letters.

[122]  Carlo Gatta,et al.  Unsupervised Deep Feature Extraction for Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[123]  Stefano Tubaro,et al.  Deep Convolutional Neural Networks for pedestrian detection , 2015, Signal Process. Image Commun..

[124]  Kilian Q. Weinberger,et al.  Marginalized Denoising Autoencoders for Domain Adaptation , 2012, ICML.

[125]  Shanjun Mao,et al.  A deep learning framework for hyperspectral image classification using spatial pyramid pooling , 2016 .

[126]  Jie Wang,et al.  Hyperspectral image classification with small training set by deep network and relative distance prior , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[127]  Mohamed Elawady,et al.  Sparse Coral Classification Using Deep Convolutional Neural Networks , 2015, ArXiv.

[128]  Haipeng Wang,et al.  Application of deep-learning algorithms to MSTAR data , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[129]  Thomas Brox,et al.  Orientation-boosted Voxel Nets for 3D Object Recognition , 2016, BMVC.

[130]  Lorenzo Bruzzone,et al.  Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances , 2016, IEEE Geoscience and Remote Sensing Magazine.

[131]  Jürgen Schmidhuber,et al.  Recurrent Highway Networks , 2016, ICML.

[132]  Kunikazu Kobayashi,et al.  Time series forecasting using a deep belief network with restricted Boltzmann machines , 2014, Neurocomputing.

[133]  Davide Cozzolino,et al.  Pansharpening by Convolutional Neural Networks , 2016, Remote. Sens..

[134]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[135]  Qiang Wang,et al.  Benchmarking State-of-the-Art Deep Learning Software Tools , 2016, 2016 7th International Conference on Cloud Computing and Big Data (CCBD).

[136]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[137]  Farid Melgani,et al.  Multilabel classification of UAV images with Convolutional Neural Networks , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[138]  Xia Xu,et al.  R-VCANet: A New Deep-Learning-Based Hyperspectral Image Classification Method , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[139]  Avik Bhattacharya,et al.  Urban classification using PolSAR data and deep learning , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[140]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[141]  Naif Alajlan,et al.  Using convolutional features and a sparse autoencoder for land-use scene classification , 2016 .

[142]  Sergey Levine,et al.  Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection , 2016, Int. J. Robotics Res..

[143]  Lei Xue,et al.  RECOGNITION OF SAR TARGET BASED ON MULTILAYER AUTO-ENCODER AND SNN , 2013 .

[144]  Jon Atli Benediktsson,et al.  Very High-Resolution Remote Sensing: Challenges and Opportunities [Point of View] , 2012, Proc. IEEE.

[145]  Kai Wang,et al.  Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists , 2010, Sensors.

[146]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[147]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[148]  Liangpei Zhang,et al.  A Multifeature Tensor for Remote-Sensing Target Recognition , 2011, IEEE Geoscience and Remote Sensing Letters.

[149]  Michael Kampffmeyer,et al.  Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[150]  Yunsong Li,et al.  Hyperspectral image reconstruction by deep convolutional neural network for classification , 2017, Pattern Recognit..

[151]  Paolo Remagnino,et al.  Deep-plant: Plant identification with convolutional neural networks , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[152]  Antonio J. Plaza,et al.  Survey of geometric and statistical unmixing algorithms for hyperspectral images , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[153]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[154]  Ramesh C. Jain,et al.  Social pixels: genesis and evaluation , 2010, ACM Multimedia.

[155]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[156]  Wen Yang,et al.  High-resolution satellite scene classification using a sparse coding based multiple feature combination , 2012 .

[157]  Wei Wang,et al.  CNN based suburban building detection using monocular high resolution Google Earth images , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[158]  Haipeng Wang,et al.  SAR target recognition based on deep learning , 2014, 2014 International Conference on Data Science and Advanced Analytics (DSAA).

[159]  Bei Zhao,et al.  Scene classification based on a hierarchical convolutional sparse auto-encoder for high spatial resolution imagery , 2017 .

[160]  Liujuan Cao,et al.  Robust vehicle detection by combining deep features with exemplar classification , 2016, Neurocomputing.

[161]  M. Siegel,et al.  Hyperspectral classification via deep networks and superpixel segmentation , 2015 .

[162]  Timothy C. Havens,et al.  Efficient Multiple Kernel Classification Using Feature and Decision Level Fusion , 2017, IEEE Transactions on Fuzzy Systems.

[163]  Menglong Yan,et al.  Object recognition in remote sensing images using sparse deep belief networks , 2015 .

[164]  Baojun Zhao,et al.  Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[165]  Ian D. Reid,et al.  Multi-modal Auto-Encoders as Joint Estimators for Robotics Scene Understanding , 2016, Robotics: Science and Systems.

[166]  Jonathan Cheung-Wai Chan,et al.  Hyperspectral image classification using two-channel deep convolutional neural network , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[167]  Maria Pantoja,et al.  Introduction to Deep Learning , 2018, Deep Learning.

[168]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[169]  Xiu Li,et al.  When underwater imagery analysis meets deep learning: A solution at the age of big visual data , 2015, OCEANS 2015 - MTS/IEEE Washington.

[170]  Marc'Aurelio Ranzato,et al.  Large Scale Distributed Deep Networks , 2012, NIPS.

[171]  Heidi Kreibich,et al.  Social media as an information source for rapid flood inundation mapping , 2015 .

[172]  Bhiksha Raj,et al.  A Survey: Time Travel in Deep Learning Space: An Introduction to Deep Learning Models and How Deep Learning Models Evolved from the Initial Ideas , 2015, ArXiv.

[173]  Markus Gerke,et al.  The ISPRS benchmark on urban object classification and 3D building reconstruction , 2012 .

[174]  Domenico Velotto,et al.  Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[175]  William J. Emery,et al.  An Innovative Neural-Net Method to Detect Temporal Changes in High-Resolution Optical Satellite Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[176]  Germán Ros,et al.  Street-view change detection with deconvolutional networks , 2016, Autonomous Robots.

[177]  Xiao Xiang Zhu,et al.  Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[178]  Pooja Gupta,et al.  Using deep learning to enhance head and neck cancer diagnosis and classification , 2018, 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA).

[179]  Ryosuke Shibasaki,et al.  Estimating crop yields with deep learning and remotely sensed data , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[180]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[181]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[182]  Shiming Xiang,et al.  Aircraft Detection by Deep Belief Nets , 2013, 2013 2nd IAPR Asian Conference on Pattern Recognition.

[183]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[184]  Shiguang Shan,et al.  Deep Network Cascade for Image Super-resolution , 2014, ECCV.

[185]  Yann LeCun,et al.  Indoor Semantic Segmentation using depth information , 2013, ICLR.

[186]  Jürgen Schmidhuber,et al.  Training Very Deep Networks , 2015, NIPS.

[187]  Jing Guo,et al.  Improved cloud phase retrieval approaches for China's FY-3A/VIRR multi-channel data using Artificial Neural Networks , 2016 .

[188]  Amy Loutfi,et al.  A review of unsupervised feature learning and deep learning for time-series modeling , 2014, Pattern Recognit. Lett..

[189]  Haiyan Guan,et al.  Automated Detection of Urban Road Manhole Covers Using Mobile Laser Scanning Data , 2015, IEEE Transactions on Intelligent Transportation Systems.

[190]  Dongmei Chen,et al.  Change detection from remotely sensed images: From pixel-based to object-based approaches , 2013 .

[191]  Peijun Du,et al.  Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging , 2016, Neurocomputing.

[192]  한보형,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015 .

[193]  Peng Liu,et al.  Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing 1 Active Deep Learning for Classification of Hyperspectral Images , 2022 .

[194]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[195]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[196]  Nassir Navab,et al.  Deep Learning of Local RGB-D Patches for 3D Object Detection and 6D Pose Estimation , 2016, ECCV.

[197]  Jiang Han,et al.  Fully convolutional networks for building and road extraction: Preliminary results , 2016 .

[198]  Ioannis Stamos,et al.  CNN-Based Object Segmentation in Urban LIDAR with Missing Points , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[199]  Jefersson Alex dos Santos,et al.  Towards better exploiting convolutional neural networks for remote sensing scene classification , 2016, Pattern Recognit..

[200]  C. W. Hamilton,et al.  AUTOMATED DETECTION OF IMPACT CRATERS AND VOLCANIC ROOTLESS CONES IN MARS SATELLITE IMAGERY USING CONVOLUTIONAL NEURAL NETWORKS AND SUPPORT VECTOR MACHINES , 2015 .

[201]  Harish Bhaskar,et al.  Supervised remote sensing image segmentation using boosted convolutional neural networks , 2016, Knowl. Based Syst..

[202]  Jonathan Larsson,et al.  Vehicle detection and road scene segmentation using deep learning , 2016 .

[203]  Liujuan Cao,et al.  Deep neural networks-based vehicle detection in satellite images , 2015, 2015 International Symposium on Bioelectronics and Bioinformatics (ISBB).

[204]  David Bergström,et al.  Hyperspectral image analysis using deep learning — A review , 2016, 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA).

[205]  Changshui Zhang,et al.  DeepFish: Accurate underwater live fish recognition with a deep architecture , 2016, Neurocomputing.

[206]  Xiaoou Tang,et al.  Image Super-Resolution Using Deep Convolutional Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[207]  Qian Du,et al.  Using CNN-based high-level features for remote sensing scene classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[208]  Shihong Du,et al.  Learning multiscale and deep representations for classifying remotely sensed imagery , 2016 .

[209]  Ji Wan,et al.  Deep Learning for Content-Based Image Retrieval: A Comprehensive Study , 2014, ACM Multimedia.

[210]  Hongyi Liu,et al.  A New Pan-Sharpening Method With Deep Neural Networks , 2015, IEEE Geoscience and Remote Sensing Letters.

[211]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[212]  Raquel Urtasun,et al.  Efficient Deep Learning for Stereo Matching , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[213]  Shawn D. Newsam,et al.  Bag-of-visual-words and spatial extensions for land-use classification , 2010, GIS '10.

[214]  Elfatih M. Abdel-Rahman,et al.  The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature , 2008 .

[215]  Zhenlong Yuan,et al.  Droid-Sec: deep learning in android malware detection , 2015, SIGCOMM 2015.

[216]  Bo Du,et al.  Scene Classification via a Gradient Boosting Random Convolutional Network Framework , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[217]  Michael A. Lefsky,et al.  Review of studies on tree species classification from remotely sensed data , 2016 .

[218]  Dong Yu,et al.  Scalable stacking and learning for building deep architectures , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[219]  A. Solberg,et al.  Oil spill detection by satellite remote sensing , 2005 .

[220]  Viorica Patraucean,et al.  gvnn: Neural Network Library for Geometric Computer Vision , 2016, ECCV Workshops.

[221]  Yong Dou,et al.  Urban Land Use and Land Cover Classification Using Remotely Sensed SAR Data through Deep Belief Networks , 2015, J. Sensors.

[222]  Michele Volpi,et al.  Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[223]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[224]  Shiming Xiang,et al.  Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks , 2014, IEEE Geoscience and Remote Sensing Letters.

[225]  John E. Ball,et al.  Level Set Hyperspectral Image Classification Using Best Band Analysis , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[226]  Ning Li,et al.  SAR ATR based on displacement- and rotation-insensitive CNN , 2016 .

[227]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[228]  Jon Atli Benediktsson,et al.  Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods , 2013, IEEE Signal Processing Magazine.

[229]  Geoffrey E. Hinton,et al.  A Better Way to Pretrain Deep Boltzmann Machines , 2012, NIPS.

[230]  Jana Kosecka,et al.  Multiview RGB-D Dataset for Object Instance Detection , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[231]  Fernando A. Mujica,et al.  An Empirical Evaluation of Deep Learning on Highway Driving , 2015, ArXiv.

[232]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[233]  Juhan Nam,et al.  Multimodal Deep Learning , 2011, ICML.

[234]  Yangqing Jia,et al.  Deep Convolutional Ranking for Multilabel Image Annotation , 2013, ICLR.

[235]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[236]  David P. Williams Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[237]  Shuang Wang,et al.  Polarimetric SAR images classification using deep belief networks with learning features , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[238]  Kiyoshi Tanaka,et al.  ArtGAN: Artwork synthesis with conditional categorical GANs , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[239]  Michael Egmont-Petersen,et al.  Image processing with neural networks - a review , 2002, Pattern Recognit..

[240]  Fabio A. González,et al.  A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-Cell Carcinoma Cancer Detection , 2013, MICCAI.

[241]  Saurabh Prasad,et al.  Level set hyperspectral image segmentation using spectral information divergence-based best band selection , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[242]  Ronan Collobert,et al.  Deep Learning for Efficient Discriminative Parsing , 2011, AISTATS.

[243]  Derek Anderson,et al.  Spectral Unmixing Cluster Validity Index for Multiple Sets of Endmembers , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[244]  Daniel Göhring,et al.  Online vehicle detection using deep neural networks and lidar based preselected image patches , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[245]  Huimin Ma,et al.  3D Object Proposals for Accurate Object Class Detection , 2015, NIPS.

[246]  Mihai Datcu,et al.  Deep learning in very high resolution remote sensing image information mining communication concept , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[247]  Supun Samarasekera,et al.  Long-Range Pedestrian Detection using stereo and a cascade of convolutional network classifiers , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[248]  Kaleem Siddiqi,et al.  Differential Geometry Boosts Convolutional Neural Networks for Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[249]  Taichi Kiwaki,et al.  Deep Boltzmann Machines with Fine Scalability , 2015, ArXiv.

[250]  Christian Wolf,et al.  Sequential Deep Learning for Human Action Recognition , 2011, HBU.

[251]  Thomas Hofmann,et al.  Greedy Layer-Wise Training of Deep Networks , 2007 .

[252]  Matus Telgarsky,et al.  Benefits of Depth in Neural Networks , 2016, COLT.

[253]  Xiaoqiang Lu,et al.  Remote Sensing Image Scene Classification: Benchmark and State of the Art , 2017, Proceedings of the IEEE.

[254]  Nirmal Keshava,et al.  A Survey of Spectral Unmixing Algorithms , 2003 .

[255]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[256]  Pascal Vincent,et al.  Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives , 2012, ArXiv.

[257]  Qi Zhang,et al.  Deep learning-based tree classification using mobile LiDAR data , 2015 .

[258]  Jun Zhou,et al.  CRF learning with CNN features for hyperspectral image segmentation , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[259]  Yi Shen,et al.  Convolutional neural network based classification for hyperspectral data , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[260]  Jiajun Wu,et al.  Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning , 2015, NIPS.

[261]  Dong Yu,et al.  Deep Learning and Its Applications to Signal and Information Processing [Exploratory DSP] , 2011, IEEE Signal Processing Magazine.

[262]  M. Körner,et al.  SINGLE-IMAGE SUPER RESOLUTION FOR MULTISPECTRAL REMOTE SENSING DATA USING CONVOLUTIONAL NEURAL NETWORKS , 2016 .

[263]  Xiao Xiang Zhu,et al.  Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[264]  Fabio Del Frate,et al.  Use of Neural Networks for Automatic Classification From High-Resolution Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[265]  Lei Guo,et al.  Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[266]  Shuang Wang,et al.  Using deep neural networks for synthetic aperture radar image registration , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[267]  M. Payne,et al.  A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink , 2013 .

[268]  Guang-Bin Huang,et al.  Trends in extreme learning machines: A review , 2015, Neural Networks.

[269]  Paolo Remagnino,et al.  How deep learning extracts and learns leaf features for plant classification , 2017, Pattern Recognit..

[270]  Nicholas J. Tate,et al.  A critical synthesis of remotely sensed optical image change detection techniques , 2015 .

[271]  Xue-wen Chen,et al.  Big Data Deep Learning: Challenges and Perspectives , 2014, IEEE Access.

[272]  Albert Y. Zomaya,et al.  Remote sensing big data computing: Challenges and opportunities , 2015, Future Gener. Comput. Syst..

[273]  Pol Coppin,et al.  Endmember variability in Spectral Mixture Analysis: A review , 2011 .

[274]  Yingfeng Cai,et al.  A Vehicle Detection Algorithm Based on Deep Belief Network , 2014, TheScientificWorldJournal.

[275]  Qian Du,et al.  Hyperspectral Image Classification Using Deep Pixel-Pair Features , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[276]  Li Fei-Fei,et al.  Recurrent Attention Models for Depth-Based Person Identification , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[277]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[278]  Yanfeng Gu,et al.  Deep fusion of hyperspectral and LiDAR data for thematic classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[279]  Mahesh Pal,et al.  KERNEL METHODS IN REMOTE SENSING: A REVIEW , 2009 .

[280]  Soumya K. Ghosh,et al.  DCAP: A deep convolution architecture for prediction of urban growth , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[281]  Nicolas H. Younan,et al.  Hyperspectral Pixel Unmixing via Spectral Band Selection and DC-Insensitive Singular Value Decomposition , 2007, IEEE Geoscience and Remote Sensing Letters.

[282]  Antonio Plaza,et al.  Recent Developments in Endmember Extraction and Spectral Unmixing , 2011 .

[283]  Nagesh Kumar Uba Land Use and Land Cover Classification Using Deep Learning Techniques , 2019, ArXiv.

[284]  Ying Liu,et al.  Geological Disaster Recognition on Optical Remote Sensing Images Using Deep Learning , 2016 .

[285]  Yue Zhang,et al.  Deep Learning for Event-Driven Stock Prediction , 2015, IJCAI.

[286]  Amy Loutfi,et al.  Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks , 2016, Remote. Sens..

[287]  Shih-Fu Chang,et al.  3D shape retrieval using a single depth image from low-cost sensors , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[288]  Dapinder Kaur,et al.  A Novel Vehicle Classification Model for Urban Traffic Surveillance Using the Deep Neural Network Model , 2016 .

[289]  Urs A. Muller,et al.  Learning long-range vision for autonomous off-road driving , 2009 .

[290]  Taghi M. Khoshgoftaar,et al.  A survey of open source tools for machine learning with big data in the Hadoop ecosystem , 2015, Journal of Big Data.

[291]  Yann LeCun,et al.  Learning Invariant Feature Hierarchies , 2012, ECCV Workshops.

[292]  Zhiwei Song,et al.  Appearance-based Brake-Lights recognition using deep learning and vehicle detection , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[293]  Uwe Stilla,et al.  Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks , 2016, IEEE Geoscience and Remote Sensing Letters.

[294]  Amnon Shashua,et al.  On the Expressive Power of Overlapping Operations of Deep Networks , 2017, ArXiv.

[295]  Andrey A. Filchenkov,et al.  Application of deep learning to the problem of vehicle detection in UAV images , 2016, 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM).

[296]  Bernt Schiele,et al.  Learning What and Where to Draw , 2016, NIPS.

[297]  Jie Geng,et al.  Spectral–Spatial Classification of Hyperspectral Image Based on Deep Auto-Encoder , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[298]  Bertrand Le Saux,et al.  How useful is region-based classification of remote sensing images in a deep learning framework? , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[299]  Pablo Casaseca-de-la-Higuera,et al.  Systematic infrared image quality improvement using deep learning based techniques , 2016, Remote Sensing.

[300]  Brian P. Salmon,et al.  Multiview Deep Learning for Land-Use Classification , 2015, IEEE Geoscience and Remote Sensing Letters.

[301]  Jihao Yin,et al.  Cloud detection of remote sensing images by deep learning , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[302]  F. Alidoost,et al.  Knowledge Based 3d Building Model Recognition Using Convolutional Neural Networks from LIDAR and Aerial Imageries , 2016 .

[303]  Yujun Zeng,et al.  Traffic Sign Recognition Using Extreme Learning Classifier with Deep Convolutional Features , 2015 .

[304]  Taghi M. Khoshgoftaar,et al.  Deep learning applications and challenges in big data analytics , 2015, Journal of Big Data.

[305]  Jamie Sherrah,et al.  Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery , 2016, ArXiv.

[306]  Hervé Glotin,et al.  LifeCLEF 2016: Multimedia Life Species Identification Challenges , 2016, CLEF.

[307]  Junwei Han,et al.  Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[308]  Quan-Sen Sun,et al.  Hyperspectral classification via learnt features , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[309]  Le Zhang,et al.  A survey of randomized algorithms for training neural networks , 2016, Inf. Sci..

[310]  Shunta Saito,et al.  Building and road detection from large aerial imagery , 2015, Electronic Imaging.

[311]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[312]  Heesung Kwon,et al.  Contextual deep CNN based hyperspectral classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[313]  Ping Wang,et al.  A CNN based functional zone classification method for aerial images , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[314]  Peter Kontschieder,et al.  Deep Neural Decision Forests , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[315]  Congcong Li,et al.  Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping , 2016 .

[316]  Luc Van Gool,et al.  Temporal Segment Networks: Towards Good Practices for Deep Action Recognition , 2016, ECCV.

[317]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[318]  Stefan Lee,et al.  Predicting Geo-informative Attributes in Large-Scale Image Collections Using Convolutional Neural Networks , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[319]  Le Wang,et al.  Incorporating spatial information in spectral unmixing: A review , 2014 .

[320]  Dong Yu,et al.  Tensor Deep Stacking Networks , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[321]  Joydeep Ghosh,et al.  An Active Learning Approach to Hyperspectral Data Classification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[322]  Ilya Sutskever,et al.  Learning Recurrent Neural Networks with Hessian-Free Optimization , 2011, ICML.

[323]  Xing Zhao,et al.  Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[324]  Yun Fu,et al.  Deep transfer learning for automatic target classification: MWIR to LWIR , 2016, SPIE Defense + Security.

[325]  Wei Zhang,et al.  Multiple Classifier System for Remote Sensing Image Classification: A Review , 2012, Sensors.

[326]  Jie Geng,et al.  High-Resolution SAR Image Classification via Deep Convolutional Autoencoders , 2015, IEEE Geoscience and Remote Sensing Letters.

[327]  Andrea Vedaldi,et al.  Understanding deep image representations by inverting them , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[328]  Cheng Wang,et al.  AUTOMATED EXTRACTION OF 3D TREES FROM MOBILE LIDAR POINT CLOUDS , 2014 .

[329]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[330]  Ligang Liu,et al.  Projective Feature Learning for 3D Shapes with Multi‐View Depth Images , 2015, Comput. Graph. Forum.

[331]  Eli Saber,et al.  Classification of remote sensed images using random forests and deep learning framework , 2016, Remote Sensing.

[332]  Jun Wu,et al.  A Hierarchical Oil Tank Detector With Deep Surrounding Features for High-Resolution Optical Satellite Imagery , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[333]  Robert James Firth A Novel Recurrent Convolutional Neural Network for Ocean and Weather Forecasting , 2016 .

[334]  James M. Keller,et al.  Extension of the Fuzzy Integral for General Fuzzy Set-Valued Information , 2014, IEEE Transactions on Fuzzy Systems.

[335]  Qiongji Jin,et al.  Design of Deep Belief Networks for Short-Term Prediction of Drought Index Using Data in the Huaihe River Basin , 2012 .

[336]  Chunhong Pan,et al.  Building extraction from multi-source remote sensing images via deep deconvolution neural networks , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[337]  Shih-Fu Chang,et al.  CDC: Convolutional-De-Convolutional Networks for Precise Temporal Action Localization in Untrimmed Videos , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[338]  Jun Huang,et al.  Infrared ultraspectral signature classification based on a restricted Boltzmann machine with sparse and prior constraints , 2015 .

[339]  Thomas Brox,et al.  Learning to generate chairs with convolutional neural networks , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[340]  Xiao Xiang Zhu,et al.  A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data , 2016, IEEE Geoscience and Remote Sensing Letters.

[341]  Tom Schaul,et al.  Unit Tests for Stochastic Optimization , 2013, ICLR.

[342]  Qiang Liu,et al.  Very high resolution images classification by fine tuning deep convolutional neural networks , 2016, International Conference on Digital Image Processing.

[343]  Jon Atli Benediktsson,et al.  Big Data for Remote Sensing: Challenges and Opportunities , 2016, Proceedings of the IEEE.

[344]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[345]  Helmut Mayer,et al.  Automatic Object Extraction from Aerial Imagery - A Survey Focusing on Buildings , 1999, Comput. Vis. Image Underst..

[346]  R. Srikant,et al.  Why Deep Neural Networks for Function Approximation? , 2016, ICLR.

[347]  Lance E. Besaw,et al.  Deep learning algorithms for detecting explosive hazards in ground penetrating radar data , 2014, Defense + Security Symposium.

[348]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[349]  Gong Cheng,et al.  Scene classification of high resolution remote sensing images using convolutional neural networks , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[350]  Darko Stefanovic,et al.  Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification , 2016, Comput. Intell. Neurosci..

[351]  Graham W. Taylor,et al.  Adaptive deconvolutional networks for mid and high level feature learning , 2011, 2011 International Conference on Computer Vision.

[352]  Wei Li,et al.  Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery , 2017, IEEE Geoscience and Remote Sensing Letters.

[353]  Alison B. Lowndes,et al.  Deep Learning with GPUs , 2016 .

[354]  Carlo Gatta,et al.  Unsupervised deep feature extraction of hyperspectral images , 2014, 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[355]  Sebastian Scherer,et al.  3D Convolutional Neural Networks for landing zone detection from LiDAR , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[356]  Amir Hossein Alavi,et al.  Machine learning in geosciences and remote sensing , 2016 .

[357]  Rajat Raina,et al.  Large-scale deep unsupervised learning using graphics processors , 2009, ICML '09.

[358]  Quoc V. Le A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks , 2015 .

[359]  Timothy C. Havens,et al.  Deep belief networks for false alarm rejection in forward-looking ground-penetrating radar , 2015, Defense + Security Symposium.

[360]  Joachim Denzler,et al.  Efficient Convolutional Patch Networks for Scene Understanding , 2015 .

[361]  Luís A. Alexandre 3D Object Recognition Using Convolutional Neural Networks with Transfer Learning Between Input Channels , 2014, IAS.

[362]  Maoguo Gong,et al.  Deep learning to classify difference image for image change detection , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[363]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[364]  Thomas S. Huang,et al.  Semisupervised Hyperspectral Classification Using Task-Driven Dictionary Learning With Laplacian Regularization , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[365]  Antonio J. Plaza,et al.  A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[366]  Nataliia Kussul,et al.  Deep learning approach for large scale land cover mapping based on remote sensing data fusion , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[367]  Xinwei Zheng,et al.  Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine , 2016 .

[368]  Jürgen Schmidhuber,et al.  Highway and Residual Networks learn Unrolled Iterative Estimation , 2016, ICLR.

[369]  Noël Richard,et al.  A Comprehensive Evaluation of Spectral Distance Functions and Metrics for Hyperspectral Image Processing , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[370]  David Morgan,et al.  Deep convolutional neural networks for ATR from SAR imagery , 2015, Defense + Security Symposium.

[371]  Gong Jianyaa,et al.  Of Multi-temporal Remote Sensing Data Change Detection Algorithms , 2008 .

[372]  Michael E. Schaepman,et al.  A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[373]  Guillermo Sapiro,et al.  Robust Large Margin Deep Neural Networks , 2016, IEEE Transactions on Signal Processing.

[374]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[375]  Ye Zhang,et al.  Classification of hyperspectral image based on deep belief networks , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[376]  Tom Schaul,et al.  No more pesky learning rates , 2012, ICML.

[377]  Dong Yu,et al.  Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[378]  Supratik Mukhopadhyay,et al.  DeepSat: a learning framework for satellite imagery , 2015, SIGSPATIAL/GIS.

[379]  Xiaorui Ma,et al.  Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning , 2016 .

[380]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[381]  Subhashini Venugopalan,et al.  Translating Videos to Natural Language Using Deep Recurrent Neural Networks , 2014, NAACL.

[382]  Yurong Liu,et al.  A survey of deep neural network architectures and their applications , 2017, Neurocomputing.

[383]  Jun Wang,et al.  Road network extraction: a neural-dynamic framework based on deep learning and a finite state machine , 2015 .

[384]  David Berthelot,et al.  BEGAN: Boundary Equilibrium Generative Adversarial Networks , 2017, ArXiv.

[385]  Vanessa Frías-Martínez,et al.  Spectral clustering for sensing urban land use using Twitter activity , 2014, Engineering applications of artificial intelligence.

[386]  Quoc V. Le,et al.  On optimization methods for deep learning , 2011, ICML.

[387]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.