A bipartite analogue of Dilworth's theorem for multiple partial orders
暂无分享,去创建一个
[1] Ira M. Gessel,et al. Classic Papers in Combinatorics , 1987 .
[2] Jirí Matousek,et al. Good splitters for counting points in triangles , 1989, SCG '89.
[3] Daniel J. Kleitman,et al. The Structure of Sperner k-Families , 1976, J. Comb. Theory, Ser. A.
[4] Nabil H. Mustafa,et al. Independent set of intersection graphs of convex objects in 2D , 2004, Comput. Geom..
[5] Géza Tóth,et al. Note on Geometric Graphs , 2000, J. Comb. Theory, Ser. A.
[6] Noga Alon,et al. Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.
[7] G. Szekeres,et al. A combinatorial problem in geometry , 2009 .
[8] Csaba D. Tóth,et al. Turán-type results for partial orders and intersection graphs of convex sets , 2010 .
[9] Steven G. Krantz,et al. On a problem of Moser , 1995 .
[10] Gyula Károlyi,et al. Ramsey-Type Results for Geometric Graphs, I , 1997, Discret. Comput. Geom..
[11] R. P. Dilworth,et al. A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .
[12] János Pach,et al. Comment on Fox news , 2006 .
[13] János Pach,et al. Some geometric applications of Dilworth's theorem , 1993, SCG '93.
[14] W. Trotter,et al. Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .
[15] András A. Benczúr,et al. Dilworth's Theorem and Its Application for Path Systems of a Cycle - Implementation and Analysis , 1999, ESA.
[16] Géza Tóth,et al. Ramsey-type results for unions of comparability graphs and convex sets inrestricted position , 1999, CCCG.
[17] Jorge Urrutia,et al. Comparability graphs and intersection graphs , 1983, Discret. Math..
[18] János Pach,et al. A Ramsey-type result for convex sets , 1994 .
[19] János Pach,et al. Ramsey-type results for geometric graphs , 1996, SCG '96.
[20] Paul Erdös,et al. A Ramsey-type theorem for bipartite graphs , 2000 .
[21] Paul Erdös,et al. Ramsey-type theorems , 1989, Discret. Appl. Math..
[22] Jacob Fox. A Bipartite Analogue of Dilworth’s Theorem , 2006, Order.
[23] H. Tietze,et al. Über das Problem der Nachbargebiete im Raum , 1905 .
[24] Csaba D. Tóth,et al. Intersection patterns of curves , 2011, J. Lond. Math. Soc..