A bipartite analogue of Dilworth's theorem for multiple partial orders

Let r be a fixed positive integer. It is shown that, given any partial orders <"1, ..., <"r on the same n-element set P, there exist disjoint subsets A,[email protected]?P, each with at least n^1^-^o^(^1^) elements, such that one of the following two conditions is satisfied: (1) there is an i([email protected][email protected]?r) such that every element of A is larger than every element of B in the partial order <"i, or (2) no element of A is comparable with any element of B in any of the partial orders <"1, ..., <"r. As a corollary, we obtain that any family C of n convex compact sets in the plane has two disjoint subfamilies A,[email protected]?C, each with at least n^1^-^o^(^1^) members, such that either every member of A intersects all members of B, or no member of A intersects any member of B.

[1]  Ira M. Gessel,et al.  Classic Papers in Combinatorics , 1987 .

[2]  Jirí Matousek,et al.  Good splitters for counting points in triangles , 1989, SCG '89.

[3]  Daniel J. Kleitman,et al.  The Structure of Sperner k-Families , 1976, J. Comb. Theory, Ser. A.

[4]  Nabil H. Mustafa,et al.  Independent set of intersection graphs of convex objects in 2D , 2004, Comput. Geom..

[5]  Géza Tóth,et al.  Note on Geometric Graphs , 2000, J. Comb. Theory, Ser. A.

[6]  Noga Alon,et al.  Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.

[7]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[8]  Csaba D. Tóth,et al.  Turán-type results for partial orders and intersection graphs of convex sets , 2010 .

[9]  Steven G. Krantz,et al.  On a problem of Moser , 1995 .

[10]  Gyula Károlyi,et al.  Ramsey-Type Results for Geometric Graphs, I , 1997, Discret. Comput. Geom..

[11]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[12]  János Pach,et al.  Comment on Fox news , 2006 .

[13]  János Pach,et al.  Some geometric applications of Dilworth's theorem , 1993, SCG '93.

[14]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[15]  András A. Benczúr,et al.  Dilworth's Theorem and Its Application for Path Systems of a Cycle - Implementation and Analysis , 1999, ESA.

[16]  Géza Tóth,et al.  Ramsey-type results for unions of comparability graphs and convex sets inrestricted position , 1999, CCCG.

[17]  Jorge Urrutia,et al.  Comparability graphs and intersection graphs , 1983, Discret. Math..

[18]  János Pach,et al.  A Ramsey-type result for convex sets , 1994 .

[19]  János Pach,et al.  Ramsey-type results for geometric graphs , 1996, SCG '96.

[20]  Paul Erdös,et al.  A Ramsey-type theorem for bipartite graphs , 2000 .

[21]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[22]  Jacob Fox A Bipartite Analogue of Dilworth’s Theorem , 2006, Order.

[23]  H. Tietze,et al.  Über das Problem der Nachbargebiete im Raum , 1905 .

[24]  Csaba D. Tóth,et al.  Intersection patterns of curves , 2011, J. Lond. Math. Soc..