Structure and function of the human skin microbiome.

An abundant and diverse collection of bacteria, fungi, and viruses inhabits the human skin. These microorganisms vary between individuals and between different sites on the skin. The factors responsible for the unique variability of the skin microbiome are only partly understood, but results suggest that host genetic and environmental influences play a major role. Today, the steady accumulation of data describing the skin microbiome, combined with experiments designed to test the biological functions of surface microbes, has provided new insights into links between human physiology and skin microbiota. This review describes some of the current information regarding the skin microbiome and its impact on human health. Specifically, we summarize the present understanding of the function of microbe-host interactions on the skin and highlight some unique features that distinguish skin commensal organisms from pathogenic microbes.

[1]  D. Ojcius,et al.  The oral microbiota: living with a permanent guest. , 2009, DNA and cell biology.

[2]  Thomas Mammone,et al.  Gender-linked differences in human skin. , 2009, Journal of dermatological science.

[3]  B. Hansson,et al.  Prevalence and type spectrum of human papillomaviruses in healthy skin samples collected in three continents. , 2003, The Journal of general virology.

[4]  Julia Oh,et al.  Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis , 2012, Genome research.

[5]  M. Blaser,et al.  Analysis of Malassezia microbiota in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. , 2008, FEMS yeast research.

[6]  B. Elewski,et al.  A bipartite interaction between Pseudomonas aeruginosa and fungi in onychomycosis. , 2005, Archives of dermatology.

[7]  A. Borkowski,et al.  TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. , 2011, The Journal of investigative dermatology.

[8]  F. Forton,et al.  Density of Demodex folliculorum in rosacea: a case‐control study using standardized skin‐surface biopsy , 1993, The British journal of dermatology.

[9]  A. Farrell,et al.  Bacterial Skin Infections in the Elderly , 2002, Drugs & aging.

[10]  Fred C Tenover,et al.  Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001-2002. , 2006, The Journal of infectious diseases.

[11]  A. Rademaker,et al.  Treatment of Staphylococcus aureus Colonization in Atopic Dermatitis Decreases Disease Severity , 2009, Pediatrics.

[12]  M. Hantschke,et al.  The Malassezia Genus in Skin and Systemic Diseases , 2012, Clinical Microbiology Reviews.

[13]  K. T. Holland,et al.  Acne and Propionibacterium acnes. , 2004, Clinics in dermatology.

[14]  Martin J. Blaser,et al.  Substantial Alterations of the Cutaneous Bacterial Biota in Psoriatic Lesions , 2008, PloS one.

[15]  N. Ahmed,et al.  Helicobacter pylori - a seasoned pathogen by any other name , 2009, Gut pathogens.

[16]  Gabriel Renaud,et al.  A diversity profile of the human skin microbiota. , 2008, Genome research.

[17]  D. Relman,et al.  Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation , 2010, Proceedings of the National Academy of Sciences.

[18]  M. Blaser,et al.  The human microbiome: at the interface of health and disease , 2012, Nature Reviews Genetics.

[19]  G. Hold Western lifestyle: a ‘master’ manipulator of the intestinal microbiota? , 2013, Gut.

[20]  W. Kaufman The diet and acne. , 1983, Archives of dermatology.

[21]  T. Boekhout,et al.  Skin diseases associated with Malassezia species. , 2004, Journal of the American Academy of Dermatology.

[22]  Chun-Ming Huang,et al.  Commensal bacteria regulate TLR3-dependent inflammation following skin injury , 2009, Nature Medicine.

[23]  S. Emerson,et al.  A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Redoules,et al.  Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation , 2012, Experimental dermatology.

[25]  S. Georgala,et al.  Increased density of Demodex folliculorum and evidence of delayed hypersensitivity reaction in subjects with papulopustular rosacea , 2001, Journal of the European Academy of Dermatology and Venereology : JEADV.

[26]  A. Irvine,et al.  Filaggrin in atopic dermatitis. , 2009, The Journal of allergy and clinical immunology.

[27]  W. Ziebuhr,et al.  Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. , 2006, International journal of antimicrobial agents.

[28]  Deborah A. Hogan,et al.  Medically important bacterial–fungal interactions , 2010, Nature Reviews Microbiology.

[29]  O. Dereure,et al.  Human Skin Microbiota: High Diversity of DNA Viruses Identified on the Human Skin by High Throughput Sequencing , 2012, PloS one.

[30]  C. Gallagher,et al.  Demodex-associated Bacillus proteins induce an aberrant wound healing response in a corneal epithelial cell line: possible implications for corneal ulcer formation in ocular rosacea. , 2012, Investigative ophthalmology & visual science.

[31]  R. Knight,et al.  Bacterial Community Variation in Human Body Habitats Across Space and Time , 2009, Science.

[32]  M. Mildner,et al.  Age-related changes in expression and function of Toll-like receptors in human skin , 2012, Development.

[33]  R. Schwabe,et al.  Transforming Growth Factor- (cid:1) 1 Inhibits Non-pathogenic Gram-negative Bacteria-induced NF- (cid:2) B Recruitment to the Interleukin-6 Gene Promoter in Intestinal Epithelial Cells through Modulation of Histone Acetylation* , 2022 .

[34]  F. Forton Papulopustular rosacea, skin immunity and Demodex: pityriasis folliculorum as a missing link , 2012, Journal of the European Academy of Dermatology and Venereology : JEADV.

[35]  K. Abulnaja Changes in the hormone and lipid profile of obese adolescent Saudi females with acne vulgaris. , 2009, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[36]  V. Nizet,et al.  Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. , 2010, The Journal of investigative dermatology.

[37]  Yoshimitsu Mizunoe,et al.  Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization , 2010, Nature.

[38]  R. Knight,et al.  Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns , 2010, Proceedings of the National Academy of Sciences.

[39]  C. Wolz,et al.  Diversity of Prophages in Dominant Staphylococcus aureus Clonal Lineages , 2009, Journal of bacteriology.

[40]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[41]  M. Otto Molecular basis of Staphylococcus epidermidis infections , 2012, Seminars in Immunopathology.

[42]  R. Rupec,et al.  Chitin Modulates Innate Immune Responses of Keratinocytes , 2011, PloS one.

[43]  Jon M Hanifin,et al.  A Population‐Based Survey of Eczema Prevalence in the United States , 2007, Dermatitis : contact, atopic, occupational, drug.

[44]  F. Powell,et al.  Demodex Mites – Commensals, Parasites or Mutualistic Organisms , 2011, Dermatology.

[45]  C. Filippo Impact of diet in shaping gut microbiota , 2012 .

[46]  R. Gallo,et al.  Antimicrobial peptides, skin infections, and atopic dermatitis. , 2008, Seminars in cutaneous medicine and surgery.

[47]  C. Deming,et al.  Topographical and Temporal Diversity of the Human Skin Microbiome , 2009, Science.

[48]  K. Kavanagh,et al.  Potential role of Demodex mites and bacteria in the induction of rosacea. , 2012, Journal of medical microbiology.

[49]  L. Engstrand,et al.  Is chronic plaque psoriasis triggered by microbiota in the skin? , 2013, The British journal of dermatology.

[50]  M. Dubinsky,et al.  Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis , 2012, Science.

[51]  Allen F Ryan,et al.  Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. , 2010, The Journal of investigative dermatology.

[52]  David Elashoff,et al.  Propionibacterium acnes strain populations in the human skin microbiome associated with acne , 2013, The Journal of investigative dermatology.

[53]  J. Clemente,et al.  Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents , 2012, The ISME Journal.

[54]  A. Hovnanian,et al.  Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea , 2007, Nature Medicine.

[55]  J. Heitman,et al.  Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast Malassezia sympodialis , 2013, mBio.

[56]  Wei Liu,et al.  TLR-2 and IL-17A in Chitin-Induced Macrophage Activation and Acute Inflammation1 , 2008, The Journal of Immunology.

[57]  G. Srinivas,et al.  Genome-wide mapping of gene–microbiota interactions in susceptibility to autoimmune skin blistering , 2013, Nature Communications.

[58]  C. Deming,et al.  Compartmentalized Control of Skin Immunity by Resident Commensals , 2012, Science.

[59]  S. Delaney,et al.  Mite‐related bacterial antigens stimulate inflammatory cells in rosacea , 2007, The British journal of dermatology.

[60]  V. Nizet,et al.  Skin microbiota: a source of disease or defence? , 2008, The British journal of dermatology.

[61]  S. Massart,et al.  Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa , 2010, Proceedings of the National Academy of Sciences.

[62]  J.,et al.  The New England Journal of Medicine , 2012 .

[63]  C. Fraser,et al.  Impact of Oral Typhoid Vaccination on the Human Gut Microbiota and Correlations with S. Typhi-Specific Immunological Responses , 2013, PloS one.

[64]  U. Mrowietz,et al.  Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. , 2010, The Journal of investigative dermatology.

[65]  M. Otto Staphylococcus epidermidis — the 'accidental' pathogen , 2009, Nature Reviews Microbiology.

[66]  E. Simpson,et al.  Eczema prevalence in the United States: data from the 2003 National Survey of Children's Health. , 2011, The Journal of investigative dermatology.

[67]  Michael Otto,et al.  Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates , 2012, Genome Biology.

[68]  Elaine Larson,et al.  Skin microbiota: microbial community structure and its potential association with health and disease. , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[69]  Julia Oh,et al.  Topographic diversity of fungal and bacterial communities in human skin , 2013, Nature.

[70]  M Toscano,et al.  [Acne vulgaris]. , 1992, Canadian family physician Medecin de famille canadien.

[71]  C. Chassard,et al.  Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host–microbe interactions contributing to obesity , 2012, Obesity reviews : an official journal of the International Association for the Study of Obesity.

[72]  R. Watt,et al.  Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development , 2010, BMC Microbiology.

[73]  C. Harding,et al.  Dandruff: a condition characterized by decreased levels of intercellular lipids in scalp stratum corneum and impaired barrier function , 2002, Archives of Dermatological Research.

[74]  J. Heitman,et al.  Malassezia Fungi Are Specialized to Live on Skin and Associated with Dandruff, Eczema, and Other Skin Diseases , 2012, PLoS pathogens.

[75]  J. Latgé,et al.  Dandruff Is Associated with Disequilibrium in the Proportion of the Major Bacterial and Fungal Populations Colonizing the Scalp , 2013, PloS one.

[76]  P. Salamon,et al.  Bacteriophage adhering to mucus provide a non–host-derived immunity , 2013, Proceedings of the National Academy of Sciences.

[77]  日本アレルギー学会 Allergology international : official journal of the Japanese Society of Allergology , 1996 .

[78]  M. Hartmann,et al.  Early life antibiotic‐driven changes in microbiota enhance susceptibility to allergic asthma , 2012, EMBO reports.

[79]  D. Leung,et al.  IL-25 Enhances HSV-1 Replication by Inhibiting Filaggrin Expression, and Acts Synergistically with TH2 Cytokines to Enhance HSV-1 Replication , 2013, The Journal of investigative dermatology.

[80]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[81]  Kyoko Takahashi,et al.  Epigenetic Control of the Host Gene by Commensal Bacteria in Large Intestinal Epithelial Cells* , 2011, The Journal of Biological Chemistry.

[82]  P. Hu,et al.  Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens , 2007, Proceedings of the National Academy of Sciences.

[83]  H. Rohde,et al.  Detection of Virulence-Associated Genes Not Useful for Discriminating between Invasive and Commensal Staphylococcus epidermidis Strains from a Bone Marrow Transplant Unit , 2004, Journal of Clinical Microbiology.

[84]  C. Bunker,et al.  The role of human endogenous retroviruses in melanoma , 2009, The British journal of dermatology.

[85]  S. Tseng,et al.  Under the lash: Demodex mites in human diseases. , 2009, The biochemist.

[86]  C. Zouboulis,et al.  An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case–control study , 2012, The British journal of dermatology.

[87]  D. Fredricks,et al.  Microbial ecology of human skin in health and disease. , 2001, The journal of investigative dermatology. Symposium proceedings.

[88]  Charles A. Bowman,et al.  Propionibacterium acnes Bacteriophages Display Limited Genetic Diversity and Broad Killing Activity against Bacterial Skin Isolates , 2012, mBio.

[89]  E. Delwart A Roadmap to the Human Virome , 2013, PLoS pathogens.

[90]  H. Tlaskalova-Hogenova Faculty Opinions recommendation of Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. , 2010 .

[91]  V. Nizet,et al.  Molecular insight into invasive group A streptococcal disease , 2011, Nature Reviews Microbiology.

[92]  D. Leung New insights into atopic dermatitis: role of skin barrier and immune dysregulation. , 2013, Allergology international : official journal of the Japanese Society of Allergology.

[93]  R. Lavigne,et al.  Bacteriophages of Pseudomonas. , 2010, Future microbiology.

[94]  R. Harris,et al.  Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus , 2009, The ISME Journal.

[95]  J. Strauss,et al.  Diet and acne revisited. , 2002, Archives of dermatology.

[96]  Colin G Fink,et al.  A novel multilocus sequence typing scheme for the opportunistic pathogen Propionibacterium acnes and characterization of type I cell surface-associated antigens. , 2011, Microbiology.

[97]  I. Kurokawa,et al.  Involvement of Propionibacterium acnes in the augmentation of lipogenesis in hamster sebaceous glands in vivo and in vitro. , 2009, The Journal of investigative dermatology.