Zur zeitlichen Variation des Metallgehaltes in der Galaxis

The two oldest known open clusters, NGC 188 and M67, are observed to have a higher heavy-element abundance than the sun and the stars in the Hyades. This observation might be explained by assuming that these clusters were formed from unusually dusty and hence metal-rich interstellar clouds. Alternatively it may be supposed that the radiation pressure produced by stars in the spiral arms of the Galaxy ejected dust from high-latitude clouds. The calculations presented in this paper show that the loss of dust from such clouds might just be sufficient to produce a significant decrease in the mean heavy-element abundance of the interstellar gas. According to this picture, the first burst of star formation in the Galaxy led to a rapid increase in the interstellar heavy-element abundance. Subsequently, the metal abundance of the interstellar gas decreased due to the radiation pressure by young stars. The present rate of change of the heavy-element abundance in the Galaxy depends on the ratio of heavy-element production by stars to ejection of these elements by radiation pressure on dust grains. Since noble gases do not condense on grains, the neon abundance in the interstellar gas should be a monotonously increasing function of time. The observation that the neon abundance in the sun is much lower than that in young stars and nebulae lends some support to the suggestion that ejection of grains from the Galaxy effects the heavy-element abundance in the interstellar gas.