Early neutron star evolution in high-mass X-ray binaries

The application of standard accretion theory to observations of X-ray binaries provides valuable insights into neutron star properties, such as their spin period and magnetic field. However, most studies concentrate on relatively old systems, where the neutron star is in its late propeller, accretor, or nearly spin equilibrium phase. Here we use an analytic model from standard accretion theory to illustrate the evolution of high-mass X-ray binaries early in their life. We show that a young neutron star is unlikely to be an accretor because of the long duration of ejector and propeller phases. We apply the model to the recently discovered ~4000 yr old high-mass X-ray binary XMMU J051342.6-672412 and find that the system's neutron star, with a tentative spin period of 4.4 s, cannot be in the accretor phase and has a magnetic field B > (a few)x10^13 G, which is comparable to the magnetic field of many older high-mass X-ray binaries and is much higher than the spin equilibrium inferred value of (a few)x10^11 G. The observed X-ray luminosity could be the result of thermal emission from a young cooling magnetic neutron star or a small amount of accretion that can occur in the propeller phase.

[1]  C. Bailyn,et al.  M51 ULX-7: superorbital periodicity and constraints on the neutron star magnetic field , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  E. Lenc,et al.  Discovery of a very young high-mass X-ray binary associated with the supernova remnant MCSNR J0513-6724 in the LMC , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  T. Enoto,et al.  Observational diversity of magnetized neutron stars , 2019, Reports on progress in physics. Physical Society.

[4]  S. Tsygankov,et al.  Broad-band aperiodic variability in X-ray pulsars: accretion rate fluctuations propagating under the influence of viscous diffusion , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  W. Ho,et al.  A systematic study of soft X-ray pulse profiles of magnetars in quiescence , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  J. Poutanen,et al.  Super-Eddington accretion discs with advection and outflows around magnetized neutron stars , 2019, Astronomy & Astrophysics.

[7]  A. Kniazev,et al.  Discovery of a putative supernova remnant around the long-period X-ray pulsar SXP 1323 in the Small Magellanic Cloud , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[8]  D. Klochkov,et al.  Cyclotron lines in highly magnetized neutron stars , 2018, Astronomy & Astrophysics.

[9]  L. Stella,et al.  A universal relation for the propeller mechanisms in magnetic rotating stars at different scales , 2017, 1711.08233.

[10]  Can Gungor,et al.  Partial accretion in the propeller stage of low mass X-ray binary Aql X--1 , 2017, 1709.02378.

[11]  A. V. Koldoba,et al.  Properties of strong and weak propellers from MHD simulations , 2017, New Astronomy.

[12]  Miguel de Val-Borro,et al.  Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems , 2017, Monthly Notices of the Royal Astronomical Society.

[13]  D. Chakrabarty,et al.  THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS , 2016, 1612.04962.

[14]  C. D’Angelo Spin equilibrium in strongly-magnetized accreting stars , 2016, 1609.08654.

[15]  A. Beloborodov,et al.  Simulations of the magnetospheres of accreting millisecond pulsars , 2016, 1608.04159.

[16]  W. Ho,et al.  Ejector and propeller spin-down: how might a superluminous supernova millisecond magnetar become the 6.67 h pulsar in RCW 103 , 2016, 1608.03149.

[17]  Shuang-Nan Zhang,et al.  SUPER STRONG MAGNETIC FIELDS OF NEUTRON STARS IN BE X-RAY BINARIES ESTIMATED WITH NEW TORQUE AND MAGNETOSPHERE MODELS , 2015, 1509.06126.

[18]  A. Beloborodov,et al.  TORQUE ENHANCEMENT, SPIN EQUILIBRIUM, AND JET POWER FROM DISK-INDUCED OPENING OF PULSAR MAGNETIC FIELDS , 2015, 1507.08627.

[19]  W. Brandt,et al.  LORD OF THE RINGS: A KINEMATIC DISTANCE TO CIRCINUS X-1 FROM A GIANT X-RAY LIGHT ECHO , 2015, 1506.06142.

[20]  W. Ho Magnetic field growth in young glitching pulsars with a braking index , 2015, 1506.03933.

[21]  A. Paizis,et al.  Wind accretion: Theory and observations , 2014, 1407.3163.

[22]  D. Viganò,et al.  Population synthesis of isolated neutron stars with magneto-rotational evolution – II. From radio-pulsars to magnetars , 2014, 1507.05452.

[23]  W. Brandt,et al.  THE YOUNGEST KNOWN X-RAY BINARY: CIRCINUS X-1 AND ITS NATAL SUPERNOVA REMNANT , 2013, 1312.0632.

[24]  W. Ho,et al.  Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the Small Magellanic Cloud , 2013, 1311.4343.

[25]  W. Ho,et al.  Equilibrium spin pulsars unite neutron star populations , 2013, 1311.1969.

[26]  A. Lançon,et al.  SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics , 2013 .

[27]  W. Ho,et al.  DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119−6127 AND SUPERNOVA REMNANT G292.2−0.5 , 2012, 1211.2761.

[28]  D. Viganò,et al.  Central compact objects and the hidden magnetic field scenario , 2012 .

[29]  Z. Edwards,et al.  DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY , 2012, 1208.1453.

[30]  N. Langer,et al.  Presupernova Evolution of Massive Single and Binary Stars , 2012, 1206.5443.

[31]  D. Viganò,et al.  CCOs and the hidden magnetic field scenario , 2012, 1206.2014.

[32]  M. Kramer,et al.  Formation of millisecond pulsars with CO white dwarf companions – II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions , 2012, 1206.1862.

[33]  T. Tauris Spin-Down of Radio Millisecond Pulsars at Genesis , 2012, Science.

[34]  M. Filipović,et al.  SXP 1062, a young Be X-ray binary pulsar with long spin period - implications for the neutron star birth spin , 2011, 1112.0491.

[35]  R. Gruendl,et al.  Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the Wing of the SMC , 2011, 1110.6404.

[36]  K. Postnov,et al.  Theory of quasi-spherical accretion in X-ray pulsars , 2011, 1110.3701.

[37]  Caroline R. D'Angelo,et al.  Accretion discs trapped near corotation , 2011, 1108.3833.

[38]  A. Santangelo,et al.  Witnessing the magnetospheric boundary at work in Vela X−1 , 2011, 1102.5254.

[39]  W. Ho Evolution of a buried magnetic field in the central compact object neutron stars , 2011, 1102.4870.

[40]  William H. Lee,et al.  Hypercritical accretion onto a magnetized neutron star surface: a numerical approach , 2010, 1006.3003.

[41]  Amsterdam,et al.  THE RETURN OF THE BURSTS: THERMONUCLEAR FLASHES FROM CIRCINUS X-1 , 2010, 1006.1379.

[42]  H. Spruit,et al.  Episodic accretion on to strongly magnetic stars , 2010, 1001.1742.

[43]  F. Haberl The magnificent seven: magnetic fields and surface temperature distributions , 2006, astro-ph/0609066.

[44]  V. Kaspi,et al.  Birth and Evolution of Isolated Radio Pulsars , 2005, astro-ph/0512585.

[45]  A. V. Koldoba,et al.  The Propeller Regime of Disk Accretion to a Rapidly Rotating Magnetized Star , 2004, astro-ph/0502266.

[46]  D. Bhattacharya Evolution of neutron star magnetic fields , 2002 .

[47]  J. Arons,et al.  Pair Multiplicities and Pulsar Death , 2001, astro-ph/0102175.

[48]  M. Alpar On Young Neutron Stars as Propellers and Accretors with Conventional Magnetic Fields , 2000, astro-ph/0005211.

[49]  Bing Zhang,et al.  Radio Pulsar Death Line Revisited: Is PSR J2144–3933 Anomalous? , 2000, The Astrophysical journal.

[50]  Kristen Menou,et al.  Black Hole and Neutron Star Transients in Quiescence , 1998, astro-ph/9810323.

[51]  Y.-M. Wang Location of the Inner Radius of a Magnetically Threaded Accretion Disk , 1996 .

[52]  Y.-M. Wang On the Torque Exerted by a Magnetically Threaded Accretion Disk , 1995 .

[53]  M. Romanova,et al.  Spin-up/spin-down of magnetized stars with accretion discs and outflows , 1994, astro-ph/9412030.

[54]  L. Cominsky,et al.  X-Ray Emission of the Pulsar--Be Star Binary PSR 1259-63 , 1994 .

[55]  M. Colpi,et al.  Do quiescent soft X-ray transients contain millisecond radio pulsars? , 1994 .

[56]  V. Lipunov Astrophysics of Neutron Stars , 1992 .

[57]  R. Romani A unified model of neutron-star magnetic fields , 1990, Nature.

[58]  R. Chevalier Neutron Star Accretion in a Supernova , 1989 .

[59]  A. Fabian,et al.  Observation of type IX-ray bursts from Cir X-1 , 1986 .

[60]  P. Ghosh,et al.  Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources. , 1979 .

[61]  R. Elsner,et al.  Accretion by magnetic neutron stars. I. Magnetospheric structure and stability. , 1977 .

[62]  J. Arons,et al.  Accretion onto magnetized neutron stars: structure and interchange instability of a model magnetosphere. , 1976 .

[63]  S. Shapiro,et al.  Black holes in X-ray binaries: Marginal existence and rotation reversals of accretion disks , 1976 .

[64]  Ruderman,et al.  Theory of pulsars: polar gaps, sparks, and coherent microwave radiation , 1975 .

[65]  D. Pines,et al.  A model for compact x-ray sources: accretion by rotating magnetic stars , 1973 .

[66]  J. Ostriker,et al.  Neutron-star accretion in a stellar wind - Model for a pulsed X-ray source. , 1973 .

[67]  P. Sturrock A Model of Pulsars , 1970 .

[68]  J. Gunn,et al.  Magnetic Dipole Radiation from Pulsars , 1969, Nature.

[69]  F. Pacini,et al.  Rotating Neutron Stars, Pulsars and Supernova Remnants , 1968, Nature.

[70]  R. Turolla Isolated Neutron Stars: The Challenge of Simplicity , 2009 .

[71]  Kaiyou Chen,et al.  Pulsar death lines and death valley , 1993 .