Farey maps, Diophantine approximation and Bruhat-Tits tree
暂无分享,去创建一个
[1] H. Nakada. Continued Fractions, Geodesic Flows and Ford Circles , 1995 .
[2] Nellie Clarke Brown. Trees , 1896, Savage Dreams.
[3] Scaling properties of multifractals as an eigenvalue problem. , 1989, Physical review. A, General physics.
[4] F. Schweiger. Ergodic Theory of Fibred Systems and Metric Number Theory , 1995 .
[5] Brigitte Vallée,et al. Fine costs for Euclid's algorithm on polynomials and Farey maps , 2014, Adv. Appl. Math..
[6] Shunji Ito,et al. Algorithms with mediant convergents and their metrical theory , 1989 .
[7] C. Series. The modular surface and continued fractions , 1985 .
[8] F. Paulin,et al. Dynamique sur le rayon modulaire et fractions continues en caractéristique p , 2005, math/0511442.
[9] E. Artin. Ein mechanisches system mit quasiergodischen bahnen , 1924 .
[10] Fractions. , 1907 .
[11] Mukarram Ahmad,et al. Continued fractions , 2019, Quadratic Number Theory.
[12] Svetlana Katok,et al. Symbolic dynamics for the modular surface and beyond , 2006 .
[13] W. Schmidt. On continued fractions and diophantine approximation in power series fields , 2000 .
[14] Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p , 2002 .