Hardware for dynamic quantum computing.

We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.

[1]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[2]  Florent Kermarrec,et al.  ARTIQ 1.0 , 2016 .

[3]  R. J. Schoelkopf,et al.  Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement , 2007 .

[4]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[5]  Krysta Marie Svore,et al.  Repeat-until-success: non-deterministic decomposition of single-qubit unitaries , 2013, Quantum Inf. Comput..

[6]  M. Reed Entanglement and Quantum Error Correction with Superconducting Qubits , 2013, 1311.6759.

[7]  Andrew W. Cross,et al.  Demonstration of quantum advantage in machine learning , 2015, npj Quantum Information.

[8]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[9]  Erik Nielsen,et al.  Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit , 2013, 1310.4492.

[10]  Andrew W. Cross,et al.  Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit , 2008, 0801.2360.

[11]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[12]  M. A. Rol,et al.  Active resonator reset in the nonlinear dispersive regime of circuit QED , 2016, 1604.00916.

[13]  John M. Martinis,et al.  Multiplexed dispersive readout of superconducting phase qubits , 2011, 1209.1781.

[14]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.

[15]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[16]  C. C. Bultink,et al.  Feedback control of a solid-state qubit using high-fidelity projective measurement. , 2012, Physical review letters.

[17]  J. McClellan,et al.  A unified approach to the design of optimum FIR linear-phase digital filters , 1973 .

[18]  Anthony Collins,et al.  16.3 A 330mW 14b 6.8GS/s dual-mode RF DAC in 16nm FinFET achieving −70.8dBc ACPR in a 20MHz channel at 5.2GHz , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[19]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[20]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[21]  M. Ben-Or,et al.  Limitations of Noisy Reversible Computation , 1996, quant-ph/9611028.

[22]  Jay M. Gambetta,et al.  Tomography via Correlation of Noisy Measurement Records , 2013, 1310.6448.

[23]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[24]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[25]  A. Glascott-Jones,et al.  Direct conversion to X band using a 4.5 GSps SiGe Digital to Analog Converter , 2014, 2014 International Radar Conference.

[26]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[27]  L. DiCarlo,et al.  Entanglement genesis by ancilla-based parity measurement in 2D circuit QED. , 2013, Physical review letters.

[28]  I D Conway Lamb,et al.  An FPGA-based instrumentation platform for use at deep cryogenic temperatures. , 2015, The Review of scientific instruments.

[29]  Edoardo Charbon,et al.  A reconfigurable cryogenic platform for the classical control of quantum processors. , 2016, The Review of scientific instruments.

[30]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[31]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[32]  J. Clarke,et al.  Dispersive magnetometry with a quantum limited SQUID parametric amplifier , 2010, 1003.2466.

[33]  David Schuster,et al.  Circuit quantum electrodynamics , 2007 .

[34]  Mazyar Mirrahimi,et al.  Persistent control of a superconducting qubit by stroboscopic measurement feedback , 2012, 1301.6095.

[35]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[36]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[37]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[38]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[39]  Jay M. Gambetta,et al.  Rapid Driven Reset of a Qubit Readout Resonator , 2015, 1503.01456.