On the range of a coercive maximal monotone operator in a nonreflexive Banach space
暂无分享,去创建一个
It is shown that the range of a coercive everywhere defined maximal monotone operator from a (nonreflexive) Banach space into its dual is dense for the weak* topology but not necessarily for the norm topology.
[1] R. Rockafellar,et al. On the maximal monotonicity of subdifferential mappings. , 1970 .
[2] J. Wada. Strict convexity and smoothness of normed spaces , 1958 .
[3] Jean-Pierre Gossez,et al. Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs , 1971 .
[4] Thomas K. Donaldson. Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces , 1971 .
[5] J. Gossez. On the subdifferential of a saddle function , 1972 .