Iterative methods for complex symmetric systems with multiple right-hand sides
暂无分享,去创建一个
[1] On methods of conjugate direction , 1979 .
[2] G. Markham. Conjugate Gradient Type Methods for Indefinite, Asymmetric, and Complex Systems , 1990 .
[3] B. Vital. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .
[4] Efstratios Gallopoulos,et al. An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..
[5] N. S. Barnett,et al. Private communication , 1969 .
[6] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[7] Marlis Hochbruck,et al. Preconditioned Krylov Subspace Methods for Lyapunov Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..
[8] B. D. Craven,et al. Complex symmetric matrices , 1969, Journal of the Australian Mathematical Society.
[9] R. Freund. Quasi-Kernel Polynomials and Convergence Results for Quasi-Minimal Residual Iterations , 1992 .
[10] Raj Mittra,et al. The biconjugate gradient method for electromagnetic scattering , 1990 .
[11] M. Sadkane. A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices , 1993 .
[12] D. A. H. Jacobs,et al. A Generalization of the Conjugate-Gradient Method to Solve Complex Systems , 1986 .
[13] Horst D. Simon,et al. A New Approach to Construction of Efficient Iterative Schemes for Massively Parallel Applications: Variable Block CG and BiCG Methods and Variable Block Arnoldi Procedure , 1993, PPSC.
[14] T. Manteuffel,et al. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .
[15] Iain S. Duff,et al. Techniques for Accelerating the Block Cimmino Method , 1991, SIAM Conference on Parallel Processing for Scientific Computing.
[16] Weitao Yang,et al. Block Lanczos approach combined with matrix continued fraction for the S‐matrix Kohn variational principle in quantum scattering , 1989 .
[17] Iain S. Duff,et al. Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .
[18] Avner Friedman. Iterative solution methods on the Cray YMP/C90 , 1994 .
[19] E. K. Miller. Assessing the Impact of Large-Scale Computing on the Size and Complexity of First-Principles Electromagnetic Models , 1991 .
[20] B. Parlett. A new look at the Lanczos algorithm for solving symmetric systems of linear equations , 1980 .
[21] R. Mittra,et al. A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields , 1989 .
[22] J. G. Lewis. Algorithms for sparse matrix eigenvalue problems , 1977 .
[23] Tapan K. Sarkar,et al. A limited survey of various conjugate gradient methods for solving complex matrix equations arising in electromagnetic wave interactions , 1988 .
[24] Roland W. Freund,et al. Implementation details of the coupled QMR algorithm , 1992 .
[25] G. Golub,et al. Iterative solution of linear systems , 1991, Acta Numerica.
[26] M. Papadrakakis,et al. A new implementation of the Lanczos method in linear problems , 1990 .
[27] David J. Schneider,et al. Calculating Slow Motional Magnetic Resonance Spectra , 1989 .
[28] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[29] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[30] Melissa S. Reeves,et al. Complex generalized minimal residual algorithm for iterative solution of quantum-mechanical reactive scattering equations , 1992 .
[31] H. V. D. Vorst,et al. A Petrov-Galerkin type method for solving Axk=b, where A is symmetric complex , 1990 .
[32] T. Sarkar. On the Application of the Generalized BiConjugate Gradient Method , 1987 .
[33] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[34] Gene H. Golub,et al. The Lanczos-Arnoldi algorithm and controllability , 1984 .
[35] F. Canning. Physical and mathematical structure determine convergence rate of iterative techniques , 1989 .
[36] Roland W. Freund,et al. An Implementation of the QMR Method Based on Coupled Two-Term Recurrences , 1994, SIAM J. Sci. Comput..
[37] Andy A. Nikishin,et al. Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..
[38] Y. Saad,et al. On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .