Iterative methods for complex symmetric systems with multiple right-hand sides

, where is complex symmetric. The block methods are based on short termrecurrencescombined with quasi-minimization of the residual. The inneriteration of the nonblockmethod appliesone residual polynomial to several right-hand sides. Implementation of all methods on a shared-memory parallelcomputeris discussedandresults from numericalexperimentsreported. Comparisonswith a single right-hand sidesolver are included and conditions under which each approach demonstrates superior performance are analyzed.Key words. complex symmetric matrices, multiple right-hand sides, block methods, conjugate gradients,quasi-minimal residual, residual polynomial, sparse matrices, Lanczos algorithm, electromagnetics, parallel pro-cessingAMS subject classifications.65F10, 65Y20

[1]  On methods of conjugate direction , 1979 .

[2]  G. Markham Conjugate Gradient Type Methods for Indefinite, Asymmetric, and Complex Systems , 1990 .

[3]  B. Vital Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .

[4]  Efstratios Gallopoulos,et al.  An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..

[5]  N. S. Barnett,et al.  Private communication , 1969 .

[6]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[7]  Marlis Hochbruck,et al.  Preconditioned Krylov Subspace Methods for Lyapunov Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..

[8]  B. D. Craven,et al.  Complex symmetric matrices , 1969, Journal of the Australian Mathematical Society.

[9]  R. Freund Quasi-Kernel Polynomials and Convergence Results for Quasi-Minimal Residual Iterations , 1992 .

[10]  Raj Mittra,et al.  The biconjugate gradient method for electromagnetic scattering , 1990 .

[11]  M. Sadkane A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices , 1993 .

[12]  D. A. H. Jacobs,et al.  A Generalization of the Conjugate-Gradient Method to Solve Complex Systems , 1986 .

[13]  Horst D. Simon,et al.  A New Approach to Construction of Efficient Iterative Schemes for Massively Parallel Applications: Variable Block CG and BiCG Methods and Variable Block Arnoldi Procedure , 1993, PPSC.

[14]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[15]  Iain S. Duff,et al.  Techniques for Accelerating the Block Cimmino Method , 1991, SIAM Conference on Parallel Processing for Scientific Computing.

[16]  Weitao Yang,et al.  Block Lanczos approach combined with matrix continued fraction for the S‐matrix Kohn variational principle in quantum scattering , 1989 .

[17]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[18]  Avner Friedman Iterative solution methods on the Cray YMP/C90 , 1994 .

[19]  E. K. Miller Assessing the Impact of Large-Scale Computing on the Size and Complexity of First-Principles Electromagnetic Models , 1991 .

[20]  B. Parlett A new look at the Lanczos algorithm for solving symmetric systems of linear equations , 1980 .

[21]  R. Mittra,et al.  A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields , 1989 .

[22]  J. G. Lewis Algorithms for sparse matrix eigenvalue problems , 1977 .

[23]  Tapan K. Sarkar,et al.  A limited survey of various conjugate gradient methods for solving complex matrix equations arising in electromagnetic wave interactions , 1988 .

[24]  Roland W. Freund,et al.  Implementation details of the coupled QMR algorithm , 1992 .

[25]  G. Golub,et al.  Iterative solution of linear systems , 1991, Acta Numerica.

[26]  M. Papadrakakis,et al.  A new implementation of the Lanczos method in linear problems , 1990 .

[27]  David J. Schneider,et al.  Calculating Slow Motional Magnetic Resonance Spectra , 1989 .

[28]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[29]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[30]  Melissa S. Reeves,et al.  Complex generalized minimal residual algorithm for iterative solution of quantum-mechanical reactive scattering equations , 1992 .

[31]  H. V. D. Vorst,et al.  A Petrov-Galerkin type method for solving Axk=b, where A is symmetric complex , 1990 .

[32]  T. Sarkar On the Application of the Generalized BiConjugate Gradient Method , 1987 .

[33]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[34]  Gene H. Golub,et al.  The Lanczos-Arnoldi algorithm and controllability , 1984 .

[35]  F. Canning Physical and mathematical structure determine convergence rate of iterative techniques , 1989 .

[36]  Roland W. Freund,et al.  An Implementation of the QMR Method Based on Coupled Two-Term Recurrences , 1994, SIAM J. Sci. Comput..

[37]  Andy A. Nikishin,et al.  Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..

[38]  Y. Saad,et al.  On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .