Simple and Efficient Public-Key Encryption from Computational Diffie-Hellman in the Standard Model

This paper proposes practical chosen-ciphertext secure public-key encryption systems that are provably secure under the computational Diffie-Hellman assumption, in the standard model. Our schemes are conceptually simpler and more efficient than previous constructions. We also show that in bilinear groups the size of the public-key can be shrunk from n to $2\sqrt{n}$ group elements, where n is the security parameter.

[1]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[2]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[3]  Dan Boneh,et al.  The Decision Diffie-Hellman Problem , 1998, ANTS.

[4]  Oded Goldreich,et al.  Foundations of Cryptography: Basic Tools , 2000 .

[5]  Mihir Bellare,et al.  The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES , 2001, CT-RSA.

[6]  Ronald Cramer,et al.  Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption , 2001, EUROCRYPT.

[7]  Ronald Cramer,et al.  Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack , 2003, SIAM J. Comput..

[8]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[9]  Dan Boneh,et al.  Efficient Selective-ID Secure Identity Based Encryption Without Random Oracles , 2004, IACR Cryptol. ePrint Arch..

[10]  Yvo Desmedt,et al.  A New Paradigm of Hybrid Encryption Scheme , 2004, CRYPTO.

[11]  Antoine Joux,et al.  A One Round Protocol for Tripartite Diffie–Hellman , 2000, Journal of Cryptology.

[12]  Jonathan Katz,et al.  Chosen-Ciphertext Security from Identity-Based Encryption , 2004, SIAM J. Comput..

[13]  Oded Goldreich,et al.  Foundations of Cryptography: Volume 2, Basic Applications , 2004 .

[14]  Qixiang Mei,et al.  Direct chosen ciphertext security from identity-based techniques , 2005, CCS '05.

[15]  Brent Waters,et al.  Efficient Identity-Based Encryption Without Random Oracles , 2005, EUROCRYPT.

[16]  Eike Kiltz,et al.  Chosen-Ciphertext Security from Tag-Based Encryption , 2006, TCC.

[17]  Brent Waters,et al.  Lossy trapdoor functions and their applications , 2008, SIAM J. Comput..

[18]  Eike Kiltz,et al.  Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman , 2007, Public Key Cryptography.

[19]  Eike Kiltz,et al.  Secure Hybrid Encryption from Weakened Key Encapsulation , 2007, CRYPTO.

[20]  Kaoru Kurosawa,et al.  Efficient Chosen Ciphertext Secure Public Key Encryption under the Computational Diffie-Hellman Assumption , 2008, IACR Cryptol. ePrint Arch..

[21]  Eike Kiltz,et al.  The Group of Signed Quadratic Residues and Applications , 2009, CRYPTO.

[22]  David Cash,et al.  The Twin Diffie–Hellman Problem and Applications , 2009, Journal of Cryptology.

[23]  Oded Goldreich,et al.  More Constructions of Lossy and Correlation-Secure Trapdoor Functions , 2010, Public Key Cryptography.

[24]  Eike Kiltz,et al.  Practical Chosen Ciphertext Secure Encryption from Factoring , 2009, Journal of Cryptology.

[25]  Oded Goldreich,et al.  More Constructions of Lossy and Correlation-Secure Trapdoor Functions , 2010, Journal of Cryptology.