Regulation of [3H]D-Aspartate Release by the 5-F2t-Isoprostane and Its 5-Epimer in Isolated Bovine Retina

[1]  J. Galano,et al.  Role of Prostanoid Receptors in the Inhibitory Effect of Synthetic Isoprostanes on Potassium‐Induced [3H]D‐Aspartate Release in Isolated Bovine Retina , 2011 .

[2]  T. Durand,et al.  Regulation of [3H]D-Aspartate Release by Neuroprostanes in Bovine Retina, in vitro , 2010 .

[3]  William S. Wright,et al.  Expression of thromboxane synthase and the thromboxane-prostanoid receptor in the mouse and rat retina. , 2009, Experimental eye research.

[4]  C. Destache,et al.  Role of Prostanoid Production and Receptors in the Regulation of Retinal Endogenous Amino Acid Neurotransmitters by 8-Isoprostaglandin E2, Ex Vivo , 2009, Neurochemical Research.

[5]  Min Zhao,et al.  Regulation of neurotransmitter release from ocular tissues by isoprostanes. , 2008, Methods and Findings in Experimental and Clinical Pharmacology.

[6]  U. Jahn,et al.  Beyond prostaglandins--chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. , 2008, Angewandte Chemie.

[7]  S. Gautam,et al.  Amino-acid levels in subretinal and vitreous fluid of patients with retinal detachment , 2008, Eye.

[8]  Andrew P. Joy,et al.  8-iso-PGE2 stimulates anion efflux from airway epithelial cells via the EP4 prostanoid receptor. , 2008, American journal of respiratory cell and molecular biology.

[9]  D. Praticò,et al.  Isoprostane F2α-VI, a new marker of oxidative stress, increases following light damage to the mouse retina , 2004, Molecular vision.

[10]  Min Zhao,et al.  Prejunctional Inhibitory Effects of Isoprostanes on Dopaminergic Neurotransmission in Bovine Retinae, In vitro , 2007, Neurochemical Research.

[11]  J. Cracowski,et al.  Involvement of endothelial thromboxane A2 in the vasoconstrictor response induced by 15-E2t-isoprostane in isolated human umbilical vein , 2006, Naunyn-Schmiedeberg's Archives of Pharmacology.

[12]  E. Niki,et al.  Detection of lipid peroxidation in light-exposed mouse retina assessed by oxidative stress markers, total hydroxyoctadecadienoic acid and 8-iso-prostaglandin F2α , 2006, Neuroscience Letters.

[13]  C. Duarte,et al.  Glutamate receptor agonists evoked Ca2+-dependent and Ca2+-independent release of [3H]d-Aspartate from cultured chick retina cells , 1996, Neurochemical Research.

[14]  Y. Ng,et al.  Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats , 2005, Journal of neuroscience research.

[15]  D. H. Thiel,et al.  Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? , 2005, Free radical biology & medicine.

[16]  Gary W. Williams,et al.  Molecular pharmacology of the DP/EP2 class prostaglandin AL-6598 and quantitative autoradiographic visualization of DP and EP2 receptor sites in human eyes. , 2004, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[17]  P. Kaufman,et al.  Aqueous humor dynamics in monkeys after topical 8-iso PGE(2). , 2004, Investigative ophthalmology & visual science.

[18]  M. Belvisi,et al.  E‐Ring 8‐isoprostanes inhibit ACh release from parasympathetic nerves innervating guinea‐pig trachea through agonism of prostanoid receptors of the EP3‐subtype , 2004, British journal of pharmacology.

[19]  L. Roberts,et al.  Isomer-specific contractile effects of a series of synthetic f2-isoprostanes on retinal and cerebral microvasculature. , 2004, Free radical biology & medicine.

[20]  C. Opere,et al.  Arachidonic acid metabolites and peroxide-induced inhibition of [3H]D-aspartate release from bovine isolated retinae , 2004, Current eye research.

[21]  L. C. Harris,et al.  Effect of Isoprostanes on Sympathetic Neurotransmission in the Human Isolated Iris-Ciliary Body , 2000, Neurochemical Research.

[22]  C. Opere,et al.  Dual Effect of Isoprostanes on the Release of [3H]D-Aspartate from Isolated Bovine Retinae: Role of Arachidonic Acid Metabolites , 2004, Neurochemical Research.

[23]  N. Sharif,et al.  Human, Bovine, and Rabbit Retinal Glutamate-Induced [3H]D-Aspartate Release: Role in Excitotoxicity , 2004, Neurochemical Research.

[24]  Kumiko Nakamura,et al.  Effects of 8-iso-prostaglandin E2 and 8-iso-prostaglandin F2 alpha on the release of noradrenaline from the isolated rat stomach. , 2003, European journal of pharmacology.

[25]  F. Gantner,et al.  An Orally Bioavailable Small Molecule Antagonist of CRTH2, Ramatroban (BAY u3405), Inhibits Prostaglandin D2-Induced Eosinophil Migration in Vitro , 2003, Journal of Pharmacology and Experimental Therapeutics.

[26]  R. Ritch,et al.  8-Isoprostaglandin F2a and ascorbic acid concentration in the aqueous humour of patients with exfoliation syndrome , 2003, The British journal of ophthalmology.

[27]  B. Halvorsen,et al.  [Isoprostanes--new markers of oxidative stress]. , 2003, Tidsskrift for Den Norske Laegeforening.

[28]  L. Desantis,et al.  Identification and characterization of the ocular hypotensive efficacy of travoprost, a potent and selective FP prostaglandin receptor agonist, and AL-6598, a DP prostaglandin receptor agonist. , 2002, Survey of ophthalmology.

[29]  L. Janssen,et al.  Involvement of TP and EP3 receptors in vasoconstrictor responses to isoprostanes in pulmonary vasculature. , 2002, The Journal of pharmacology and experimental therapeutics.

[30]  U. Schlötzer-Schrehardt,et al.  Expression and localization of FP and EP prostanoid receptor subtypes in human ocular tissues. , 2002, Investigative ophthalmology & visual science.

[31]  M. Senchyna,et al.  Optimization of RNA isolation from human ocular tissues and analysis of prostanoid receptor mRNA expression using RT-PCR. , 2002, Molecular vision.

[32]  J. Cracowski,et al.  The 5‐series F2‐isoprostanes possess no vasomotor effects in the rat thoracic aorta, the human internal mammary artery and the human saphenous vein , 2002 .

[33]  J. Cracowski,et al.  The 5-series F(2)-isoprostanes possess no vasomotor effects in the rat thoracic aorta, the human internal mammary artery and the human saphenous vein. , 2002, British journal of pharmacology.

[34]  J. Cracowski,et al.  Syntheses and preliminary pharmacological evaluation of the two epimers of the 5-F2t-isoprostane. , 2001, Bioorganic & medicinal chemistry letters.

[35]  D. Denis,et al.  Key structural features of prostaglandin E(2) and prostanoid analogs involved in binding and activation of the human EP(1) prostanoid receptor. , 2001, Molecular pharmacology.

[36]  L. Janssen Isoprostanes: an overview and putative roles in pulmonary pathophysiology. , 2001, American journal of physiology. Lung cellular and molecular physiology.

[37]  L. C. Harris,et al.  Potentiation of sympathetic neurotransmission in bovine isolated irides by isoprostanes , 2001, Free radical research.

[38]  R. Wintersteiger,et al.  Characterization of prostanoid receptors mediating actions of the isoprostanes, 8‐iso‐PGE2 and 8‐iso‐PGF2α, in some isolated smooth muscle preparations , 2000, British journal of pharmacology.

[39]  J. Nourooz-Zadeh,et al.  F2 Isoprostanes, Potential Specific Markers of Oxidative Damage in Human Retina , 2000, Ophthalmic Research.

[40]  F. Stanke-Labesque,et al.  Isoprostanes: nouveaux marqueurs du stress oxydant. Aspects fondamentaux et cliniques , 2000 .

[41]  E. Ellis,et al.  Augmented vasoconstriction and thromboxane formation by 15-F(2t)-isoprostane (8-iso-prostaglandin F(2alpha)) in immature pig periventricular brain microvessels. , 2000, Stroke.

[42]  Y. Boie,et al.  The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. , 2000, Biochimica et biophysica acta.

[43]  J. Cracowski,et al.  [Isoprostanes: new markers of oxidative stress. Fundamental and clinical aspects]. , 2000, La Revue de medecine interne.

[44]  T. Evans,et al.  Isoprostanes and PGE2 production in human isolated pulmonary artery smooth muscle cells: concomitant and differential release , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[45]  J. Morrow,et al.  Novel eicosanoids. Isoprostanes and related compounds. , 1999, Methods in molecular biology.

[46]  M. Lagarde,et al.  In vivo effect of 8-epi-PGF2alpha on retinal circulation in diabetic and non-diabetic rats. , 1998, Prostaglandins, leukotrienes, and essential fatty acids.

[47]  S. Podos,et al.  Effect of 8-iso prostaglandin E2 on aqueous humor dynamics in monkeys. , 1998, Archives of ophthalmology.

[48]  J. Morrow,et al.  A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F2 alpha on retinal vessels. , 1998, The American journal of physiology.

[49]  J. Morrow,et al.  A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F2α on retinal vessels. , 1998, American journal of physiology. Regulatory, integrative and comparative physiology.

[50]  C. Barnstable,et al.  Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells. , 1998, Investigative ophthalmology & visual science.

[51]  S. Lipton,et al.  Molecular basis of glutamate toxicity in retinal ganglion cells , 1997, Vision Research.

[52]  P. Rangachari,et al.  Intestinal effects of isoprostanes: evidence for the involvement of prostanoid EP and TP receptors. , 1997, The Journal of pharmacology and experimental therapeutics.

[53]  T. Evans,et al.  Release of isoprostanes by human pulmonary artery in organ culture: a cyclo-oxygenase and nitric oxide dependent pathway. , 1997, Biochemical and biophysical research communications.

[54]  L. Bito,et al.  Structure-activity relationships and receptor profiles of some ocular hypotensive prostanoids. , 1997, Survey of ophthalmology.

[55]  R. J. Waugh,et al.  Identification and relative quantitation of F2-isoprostane regioisomers formed in vivo in the rat. , 1997, Free radical biology & medicine.

[56]  D. Harry,et al.  8-Isoprostaglandin F2 alpha, a product of lipid peroxidation, increases portal pressure in normal and cirrhotic rats. , 1997, Gastroenterology.

[57]  B. Kromer,et al.  Coronary artery constriction by the isoprostane 8‐epi prostaglandin F2α , 1996, British journal of pharmacology.

[58]  C. Patrono,et al.  Induction of prostaglandin endoperoxide synthase‐2 in human monocytes associated with cyclo‐oxygenase‐dependent F2‐isoprostane formation , 1996, British journal of pharmacology.

[59]  G. FitzGerald,et al.  Generation of 8-epiprostaglandin F2alpha by human monocytes. Discriminate production by reactive oxygen species and prostaglandin endoperoxide synthase-2. , 1996, The Journal of biological chemistry.

[60]  M. Yacoub,et al.  8-Epi-PGF2 alpha, a novel noncyclooxygenase-derived prostaglandin, constricts airways in vitro. , 1996, American journal of respiratory and critical care medicine.

[61]  J. Regan,et al.  6-Isopropoxy-9-oxoxanthene-2-carboxylic acid (AH 6809), a human EP2 receptor antagonist. , 1995, Biochemical pharmacology.

[62]  G. FitzGerald,et al.  Cylooxygenase-dependent Formation of the Isoprostane, 8-Epi Prostaglandin F2α(*) , 1995, The Journal of Biological Chemistry.

[63]  K. Badr,et al.  Molecular and functional evidence for the distinct nature of F2-isoprostane receptors from those of thromboxane A2. , 1995, Advances in prostaglandin, thromboxane, and leukotriene research.

[64]  J. Morrow,et al.  Evidence for the existence of F2-isoprostane receptors on rat vascular smooth muscle cells. , 1993, The American journal of physiology.

[65]  P. Gardiner,et al.  BAY u3405, a potent and selective thromboxane A2 receptor antagonist on airway smooth muscle in vitro , 1991, British journal of pharmacology.

[66]  J. Morrow,et al.  A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[67]  P. Roberts,et al.  Effect of excitatory amino acid analogues on the release of D-[3H]aspartate from chick retina. , 1987, European journal of pharmacology.

[68]  A. López-Colomé,et al.  Effect of selective kainate lesions on the release of glutamate and aspartate from chick retina , 1986, Journal of neuroscience research.

[69]  J. Storm-Mathisen,et al.  Glutamate : transmitter in the central nervous system , 1981 .

[70]  B. Becker,et al.  Aqueous humor dynamics; theoretical considerations. , 1956, American journal of ophthalmology.