Inference based on Kotlarski's Identity

Kotlarski's identity has been widely used in applied economic research. However, how to conduct inference based on this popular identification approach has been an open question for two decades. This paper addresses this open problem by constructing a novel confidence band for the density function of a latent variable in repeated measurement error model. The confidence band builds on our finding that we can rewrite Kotlarski's identity as a system of linear moment restrictions. The confidence band controls the asymptotic size uniformly over a class of data generating processes, and it is consistent against all fixed alternatives. Simulation studies support our theoretical results.

[1]  H. White,et al.  SOME EXTENSIONS OF A LEMMA OF KOTLARSKI , 2012, Econometric Theory.

[2]  Xavier D'Haultfoeuille,et al.  ON THE COMPLETENESS CONDITION IN NONPARAMETRIC INSTRUMENTAL PROBLEMS , 2010, Econometric Theory.

[3]  Tong Li,et al.  Robust and consistent estimation of nonlinear errors-in-variables models , 2002 .

[4]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[5]  A. Feuerverger,et al.  The Empirical Characteristic Function and Its Applications , 1977 .

[6]  Jean-Marc Robin,et al.  Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics , 2010 .

[7]  James J. Heckman,et al.  Estimating the Technology of Cognitive and Noncognitive Skill Formation , 2010, Econometrica : journal of the Econometric Society.

[8]  Victor Chernozhukov,et al.  Testing Many Moment Inequalities , 2013 .

[9]  Philippe Blanchard,et al.  Mathematical methods in physics : distributions, Hilbert space operators and variational methods , 2003 .

[10]  Q. Vuong,et al.  Structural Estimation of the Affliated Private Value Auction Model , 2002 .

[11]  Kengo Kato,et al.  Uniform confidence bands for nonparametric errors-in-variables regression , 2017, Journal of Econometrics.

[12]  Susanne M. Schennach,et al.  Estimation of Nonlinear Models with Measurement Error , 2004 .

[13]  T. W. Anderson,et al.  Estimation of the Parameters of a Single Equation in a Complete System of Stochastic Equations , 1949 .

[14]  Quang Vuong,et al.  Conditionally independent private information in OCS wildcat auctions , 2000 .

[15]  Claire Lacour,et al.  Data‐driven density estimation in the presence of additive noise with unknown distribution , 2011 .

[16]  Marianthi Markatou,et al.  Semiparametric Estimation Of Regression Models For Panel Data , 1993 .

[17]  J. Johannes DECONVOLUTION WITH UNKNOWN ERROR DISTRIBUTION , 2007, 0705.3482.

[18]  Ignacy I. Kotlarski,et al.  ON CHARACTERIZING THE GAMMA AND THE NORMAL DISTRIBUTION , 1967 .

[19]  Yoon-Jae Whang,et al.  Inference on distribution functions under measurement error , 2020 .

[20]  N. Bissantz,et al.  Statistical inference for inverse problems , 2008 .

[21]  Xiaohong Chen,et al.  Optimal Sup-Norm Rates and Uniform Inference on Nonlinear Functionals of Nonparametric IV Regression , 2015, 1508.03365.

[22]  Peter J. Diggle,et al.  A Fourier Approach to Nonparametric Deconvolution of a Density Estimate , 1993 .

[23]  G. Folland Fourier analysis and its applications , 1992 .

[24]  R. Carroll,et al.  Deconvolving kernel density estimators , 1987 .

[25]  J. Horowitz,et al.  Uniform confidence bands for functions estimated nonparametrically with instrumental variables , 2009 .

[26]  Susanne M. Schennach QUANTILE REGRESSION WITH MISMEASURED COVARIATES , 2008, Econometric Theory.

[27]  J. Florens,et al.  A SPECTRAL METHOD FOR DECONVOLVING A DENSITY , 2010, Econometric Theory.

[28]  Han Hong,et al.  Nonlinear Models of Measurement Errors , 2011 .

[29]  Michael H. Neumann,et al.  On the effect of estimating the error density in nonparametric deconvolution , 1997 .

[30]  B. Es,et al.  Weak convergence of the supremum distance for supersmooth kernel deconvolution , 2008, 0802.2186.

[31]  Sam Efromovich,et al.  Density Estimation for the Case of Supersmooth Measurement Error , 1997 .

[32]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[33]  Xiaoxia Shi,et al.  Inference Based on Many Conditional Moment Inequalities , 2010 .

[34]  Tong Li,et al.  Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators , 1998 .

[35]  Quang Vuong,et al.  Nonparametric estimation of the mea-surement eror model using multiple indicators , 1998 .

[36]  E. Krasnokutskaya,et al.  Identification and Estimation of Auction Models with Unobserved Heterogeneity , 2011 .

[37]  J. Kennan,et al.  The Effect of Expected Income on Individual Migration Decisions , 2003 .

[38]  J. Florens,et al.  GENERALIZATION OF GMM TO A CONTINUUM OF MOMENT CONDITIONS , 2000, Econometric Theory.

[39]  Antonio F. Galvao,et al.  Measurement errors in quantile regression models , 2017 .

[40]  Andrés Santos Instrumental variable methods for recovering continuous linear functionals , 2011 .

[41]  Alexander Meister,et al.  On deconvolution with repeated measurements , 2008 .

[42]  Susanne M. Schennach,et al.  Recent Advances in the Measurement Error Literature , 2016 .

[43]  Victoria Zinde-Walsh Identification and Well-Posedness in Nonparametric Models with Independence Conditions , 2012, 1209.1588.

[44]  Susanne M. Schennach,et al.  Estimating Nonseparable Models with Mismeasured Endogenous Variables , 2015 .

[45]  Stéphane Bonhomme,et al.  Recovering Distributions in Difference-in-Differences Models: A Comparison of Selective and Comprehensive Schooling , 2011, Review of Economics and Statistics.

[46]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[47]  Peter Hall,et al.  A simple bootstrap method for constructing nonparametric confidence bands for functions , 2013, 1309.4864.

[48]  Kengo Kato,et al.  Inference on Causal and Structural Parameters using Many Moment Inequalities , 2013, The Review of Economic Studies.

[49]  Irène Gijbels,et al.  Practical bandwidth selection in deconvolution kernel density estimation , 2004, Comput. Stat. Data Anal..

[50]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[51]  Andrii Babii HONEST CONFIDENCE SETS IN NONPARAMETRIC IV REGRESSION AND OTHER ILL-POSED MODELS , 2016, Econometric Theory.

[52]  R. Nickl,et al.  GLOBAL UNIFORM RISK BOUNDS FOR WAVELET DECONVOLUTION ESTIMATORS , 2011, 1103.1489.

[53]  P. Hall,et al.  Methodology for non‐parametric deconvolution when the error distribution is unknown , 2016 .

[54]  A. Munk,et al.  Non‐parametric confidence bands in deconvolution density estimation , 2007 .