Lower bound of concurrence for qubit systems

We study the concurrence of four-qubit quantum states and provide analytical lower bounds of concurrence in terms of the monogamy inequality of concurrence for qubit systems. It is shown that these lower bounds are able to improve the existing bounds and detect entanglement better. The approach is generalized to arbitrary qubit systems.

[1]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[2]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[3]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[4]  Andreas Buchleitner,et al.  Decoherence and multipartite entanglement. , 2004, Physical review letters.

[5]  H. Breuer Optimal entanglement criterion for mixed quantum states. , 2006, Physical review letters.

[6]  S. Fei,et al.  Concurrence of arbitrary dimensional bipartite quantum states. , 2005, Physical review letters.

[7]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  Guang-Can Guo,et al.  Optimal entanglement witnesses based on local orthogonal observables , 2007, 0705.1832.

[10]  Florian Mintert,et al.  Measuring multipartite concurrence with a single factorizable observable. , 2006, Physical review letters.

[11]  C. Caves,et al.  Concurrence-based entanglement measures for isotropic states , 2003 .

[12]  Shao-Ming Fei,et al.  Lower bounds of concurrence for tripartite quantum systems , 2006 .

[13]  R. Werner,et al.  Entanglement measures under symmetry , 2000, quant-ph/0010095.

[14]  M. Kus,et al.  Concurrence of mixed bipartite quantum states in arbitrary dimensions. , 2004, Physical review letters.

[15]  S. Fei,et al.  Concurrence-Based Entanglement Measure for Werner States , 2006, quant-ph/0702017.

[16]  A. Uhlmann Fidelity and Concurrence of conjugated states , 1999, quant-ph/9909060.

[17]  S. Fei,et al.  Estimation of concurrence for multipartite mixed states , 2008 .

[18]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[19]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[20]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[21]  Simone Severini,et al.  Improved lower bounds on genuine-multipartite-entanglement concurrence , 2012, 1205.3057.

[22]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[23]  Zhi-Xi Wang,et al.  A note on entanglement of formation and generalized concurrence , 2004 .

[24]  Heinz-Peter Breuer Separability criteria and bounds for entanglement measures , 2006 .

[25]  Sergio Albeverio,et al.  Entanglement of formation and concurrence for mixed states , 2008, Frontiers of Computer Science in China.

[26]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[27]  Yong-Sheng Zhang,et al.  Observable estimation of entanglement for arbitrary finite-dimensional mixed states , 2008, 0806.2598.

[28]  Julio I. de Vicente,et al.  Lower bounds on concurrence and separability conditions , 2006, quant-ph/0611229.