High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber

We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a ‘Yin-Yang’ all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser.

[1]  Reza Khazaeinezhad,et al.  All-fiber Er-doped Q-Switched laser based on Tungsten Disulfide saturable absorber , 2015 .

[2]  P. Werle,et al.  Near- and mid-infrared laser-optical sensors for gas analysis , 2002 .

[3]  M. Fermann,et al.  Nonlinear amplifying loop mirror. , 1990, Optics letters.

[4]  Joonhoi Koo,et al.  An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction , 2012 .

[5]  Jingliang He,et al.  Passively Q-switched 2 μm Tm:YAP laser based on graphene saturable absorber mirror. , 2014, Applied optics.

[6]  Wei Shi,et al.  All fiber-based single-frequency Q-switched laser pulses at 2 μm for lidar and remote sensing applications , 2011, Optical Engineering + Applications.

[7]  Zhengqian Luo,et al.  1-, 1.5-, and 2-μm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber , 2014, Journal of Lightwave Technology.

[8]  Zhengqian Luo,et al.  1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi₂Se₃ as a saturable absorber. , 2013, Optics express.

[9]  Thierry Robin,et al.  6.5 W ZnGeP(2) OPO directly pumped by a Q-switched Tm(3+)-doped single-oscillator fiber laser. , 2015, Optics letters.

[10]  Marc Eichhorn,et al.  High-pulse-energy actively Q-switched Tm 3+ -doped silica 2 μm fiber laser pumped at 792 nm , 2007 .

[11]  P. Powers,et al.  Longwave-IR optical parametric oscillator in orientation-patterned GaAs pumped by a 2 µm Tm,Ho:YLF laser. , 2013, Optics express.

[12]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[13]  Samuli Kivistö,et al.  Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression. , 2008, Optics express.

[14]  Ian H. White,et al.  Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers , 2008 .

[15]  S. Jackson Towards high-power mid-infrared emission from a fibre laser , 2012, Nature Photonics.

[16]  A. Ferrari,et al.  Double-wall carbon nanotube Q-switched and mode-locked two-micron fiber lasers , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[17]  Zhengqian Luo,et al.  Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 $\mu$m Wavelength , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Zhengqian Luo,et al.  High-energy passively Q-switched 2 μm Tm(3+)-doped double-clad fiber laser using graphene-oxide-deposited fiber taper. , 2013, Optics express.

[19]  S. Namiki,et al.  Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker , 2006 .

[20]  Zhipei Sun,et al.  74-fs nanotube-mode-locked fiber laser , 2012 .

[21]  Govind P. Agrawal,et al.  Applications of Nonlinear Fiber Optics , 2001 .

[22]  Yanrong Song,et al.  Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber. , 2013, Applied optics.

[23]  Xiaohui Li,et al.  High-power thulium fiber laser Q switched with single-layer graphene. , 2014, Optics letters.

[24]  Junsu Lee,et al.  Passively Q-switched 1.56 μm all-fiberized laser based on evanescent field interaction with bulk-structured bismuth telluride topological insulator , 2014 .

[25]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[26]  Chengbo Mou,et al.  Higher-Order Soliton Generation in Hybrid Mode-Locked Thulium-Doped Fiber Ring Laser , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Qi Jie Wang,et al.  Broadband Saturable Absorption of Graphene Oxide Thin Film and Its Application in Pulsed Fiber Lasers , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Jia Xu,et al.  Graphene-based passively Q-switched 2 μm thulium-doped fiber laser , 2012 .

[29]  Hermann A. Haus,et al.  Additive-pulse modelocking in fiber lasers , 1994 .

[30]  Marc Eichhorn,et al.  High-pulse-energy, actively Q-switched Tm 3+ ,Ho 3+ -codoped silica 2μm fiber laser , 2008 .

[31]  B. H. Chapman,et al.  Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. , 2013, Optics express.

[32]  K. Itoh,et al.  Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film. , 2009, Optics express.

[33]  B. Grady Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications , 2011 .

[34]  Atsushi Sato,et al.  Conductive-cooled 2-micron laser development for wind and CO2 measurements , 2012, Asia-Pacific Environmental Remote Sensing.

[35]  Yongmin Jung,et al.  Thulium-doped fiber amplifier for optical communications at 2µm , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[36]  A. Z. Zulkifli,et al.  2.0-$\mu\hbox{m}$ Q-Switched Thulium-Doped Fiber Laser With Graphene Oxide Saturable Absorber , 2013, IEEE Photonics Journal.

[37]  Richard V. Penty,et al.  Fabrication, characterization and mode locking application of single-walled carbon nanotube/polymer composite saturable absorbers , 2008 .

[38]  F. Torrisi,et al.  Graphene Q-switched, tunable fiber laser , 2010, 1011.0115.

[39]  Shinji Yamashita,et al.  Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. , 2011, Optics express.

[40]  M. Tokumoto,et al.  Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol , 2005 .

[41]  Peter Fuchs,et al.  DFB Lasers Between 760 nm and 16 μm for Sensing Applications , 2010, Sensors.

[42]  Xia Yu,et al.  Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser. , 2014, Optics express.

[43]  Wei Zhang,et al.  Wavelength-Switchable and Wavelength-Tunable All-Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser Based on Single-Walled Carbon Nanotube Wall Paper Absorber , 2012, IEEE Photonics Journal.

[44]  Marko Pudas,et al.  Multifunctional free-standing single-walled carbon nanotube films. , 2011, ACS nano.

[45]  M. Jablonski,et al.  Ultrafast fiber pulsed lasers incorporating carbon nanotubes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  N. Fried,et al.  High-power thulium fiber laser ablation of urinary tissues at 1.94 microm. , 2005, Journal of endourology.

[47]  Q. Fang 2microm pulsed fiber laser sources and their application in terahertz generation , 2012 .

[48]  C. D. Hussey,et al.  Approximate analytic forms for the propagation characteristics of single-mode optical fibres , 1985 .

[49]  Klaus Petermann,et al.  Constraints for fundamental-mode spot size for broadband dispersion-compensated single-mode fibres , 1983 .

[50]  N. Doran,et al.  Nonlinear-optical loop mirror. , 1988, Optics letters.

[51]  Zhipei Sun,et al.  Nanotube–Polymer Composites for Ultrafast Photonics , 2009 .

[52]  Emmanuel Flahaut,et al.  Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation , 2014, ACS nano.

[53]  B. Alman,et al.  Ultrafast MidIR Laser Scalpel : Protein Signals of the Fundamental Limits to Minimally Invasive Surgery , 2011 .

[54]  R. J. Dwayne Miller,et al.  Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery , 2010, PloS one.

[55]  J R Taylor,et al.  Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS₂). , 2014, Optics express.

[56]  Camille-Sophie Brès,et al.  Isolator-free unidirectional thulium-doped fiber laser , 2015, Light: Science & Applications.

[57]  David J. Richardson,et al.  Towards high-capacity fibre-optic communications at the speed of light in vacuum , 2013, Nature Photonics.

[58]  P. Wai,et al.  Operation of a nonlinear loop mirror in a laser cavity , 1994 .

[59]  Zhengqian Luo,et al.  Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber. , 2014, Optics express.

[60]  R. Yang,et al.  Passively Q-switching induced by gold nanocrystals , 2012 .

[61]  D. Shen,et al.  A passively Q-switched thulium-doped fiber laser with single-walled carbon nanotubes , 2013 .

[62]  Junsu Lee,et al.  All-fiberized, passively Q-switched 1.06 μm laser using a bulk-structured Bi2Te3 topological insulator , 2014 .

[63]  Zheng Zheng,et al.  Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber , 2015, Scientific Reports.

[64]  Zhipei Sun,et al.  Nanotube and graphene saturable absorbers for fibre lasers , 2013, Nature Photonics.

[65]  P. G. Kryukov,et al.  Nonlinear Amplifying Loop-Mirror-Based Mode-Locked Thulium-Doped Fiber Laser , 2012, IEEE Photonics Technology Letters.

[66]  R. Andrews,et al.  Carbon nanotube polymer composites , 2004 .