Global Minimum for Active Contour Models: A Minimal Path Approach

A new boundary detection approach for shape modeling is presented. It detects the global minimum of an active contour model’s energy between two end points. Initialization is made easier and the curve is not trapped at a local minimum by spurious edges. We modify the “snake” energy by including the internal regularization term in the external potential term. Our method is based on finding a path of minimal length in a Riemannian metric. We then make use of a new efficient numerical method to find this shortest path.It is shown that the proposed energy, though based only on a potential integrated along the curve, imposes a regularization effect like snakes. We explore the relation between the maximum curvature along the resulting contour and the potential generated from the image.The method is capable to close contours, given only one point on the objects' boundary by using a topology-based saddle search routine.We show examples of our method applied to real aerial and medical images.

[1]  S. Arrhenius The Viscosity of Solutions. , 1917, The Biochemical journal.

[2]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[3]  Robert E. Kalaba,et al.  Dynamic Programming and Modern Control Theory , 1966 .

[4]  Ugo Montanari,et al.  On the optimal detection of curves in noisy pictures , 1971, CACM.

[5]  Demetri Terzopoulos Matching Deformable Models to Images: Direct and Iterative Solutions , 1987, Topical Meeting on Machine Vision.

[6]  P. Danielsson Euclidean distance mapping , 1980 .

[7]  Martin A. Fischler,et al.  Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique☆ , 1981 .

[8]  M. A. Jaswon A Review of the Theory , 1984 .

[9]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[10]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[11]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[13]  David W. Payton,et al.  Planning and reasoning for autonomous vehicle control , 1987 .

[14]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[15]  Alfred M. Bruckstein,et al.  Shape From Shading , 2006, Handbook of Mathematical Models in Computer Vision.

[16]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[17]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[19]  Piet W. Verbeek,et al.  Shading from shape, the eikonal equation solved by grey-weighted distance transform , 1990, Pattern Recognit. Lett..

[20]  P. Cinquin,et al.  Dynamic Segmentation : Detecting Complex Topology 3D-object , 1991, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991.

[21]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[22]  Sharat Chandran,et al.  Global minima via dynamic programming: energy minimizing active contours , 1991, Optics & Photonics.

[23]  E. Thiel,et al.  Chamfer masks: discrete distance functions, geometrical properties and optimization , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[24]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[25]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[26]  P. Gács,et al.  Algorithms , 1992 .

[27]  Kazuhiko Yamamoto,et al.  Motion tracking of deformable objects based on energy minimization using multiscale dynamic programming , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[28]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[29]  Richard Szeliski,et al.  Curvature and continuity control in particle-based surface models , 1993, Optics & Photonics.

[30]  Gábor Székely,et al.  Estimating shortest paths and minimal distances on digitized three-dimensional surfaces , 1993, Pattern Recognit..

[31]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[33]  Laurent D. Cohen,et al.  Surface reconstruction using active contour models , 1993 .

[34]  Josiane Zerubia,et al.  A Curvature-Dependent Energy Function for Detecting Lines in Satellite Images , 1993 .

[35]  Jerry L. Prince,et al.  Adaptive active contour algorithms for extracting and mapping thick curves , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Frederic Fol Leymarie,et al.  Tracking Deformable Objects in the Plane Using an Active Contour Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Josiane Zerubia,et al.  New prospects in line detection for remote sensing images , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[38]  Gábor Székely,et al.  Making snakes converge from minimal initialization , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[39]  Baba C. Vemuri,et al.  Evolutionary Fronts for Topology-Independent Shape Modeling and Recoveery , 1994, ECCV.

[40]  P. Dupuis,et al.  An Optimal Control Formulation and Related Numerical Methods for a Problem in Shape Reconstruction , 1994 .

[41]  David N. Levin,et al.  Brownian strings: segmenting images with stochastically deformable contours , 1994, Other Conferences.

[42]  W. Gibbs,et al.  Finite element methods , 2017, Graduate Studies in Mathematics.

[43]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[44]  R. Malladi,et al.  A Unified Framework for Shape Segmentation, Representation, and Recognition , 1994 .

[45]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[46]  Demetri Terzopoulos,et al.  Medical Image Segmentation Using Topologically Adaptable Snakes , 1995, CVRMed.

[47]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  William A. Barrett,et al.  Intelligent scissors for image composition , 1995, SIGGRAPH.

[49]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[51]  Ron Kimmel,et al.  Finding shortest paths on surfaces by fast global approximation and precise local refinement , 1995, Other Conferences.

[52]  Ron Kimmel Curve Evolution On Surfaces , 1995 .

[53]  Benjamin B. Kimia,et al.  Image segmentation by reaction-diffusion bubbles , 1995, Proceedings of IEEE International Conference on Computer Vision.

[54]  L. Cohen,et al.  Edge Integration Using Minimal Geodesics , 1995 .

[55]  J. Tsitsiklis Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..

[56]  Ross T. Whitaker,et al.  Algorithms for implicit deformable models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[57]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Donald Geman,et al.  An Active Testing Model for Tracking Roads in Satellite Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Ron Kimmel,et al.  Fast Marching Methods for Computing Distance Maps and Shortest Paths , 1996 .

[60]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[61]  Jayant Shah,et al.  A common framework for curve evolution, segmentation and anisotropic diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[62]  Ron Kimmel,et al.  Finding The Shortest Paths on Surfaces by Fast Global Approximation and Precise Local Refinement , 1996, Int. J. Pattern Recognit. Artif. Intell..

[63]  Guillermo Sapiro,et al.  Three Dimensional Object Modeling via Minimal Surfaces , 1996, ECCV.

[64]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Guillermo Sapiro,et al.  Vector-valued active contours , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[66]  J. Sethian METHODS FOR PROPAGATING INTERFACES , 1998 .

[67]  S. Osher,et al.  Level Set , 2000 .

[68]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[69]  Alfred M. Bruckstein,et al.  Sub-pixel distance maps and weighted distance transforms , 1996, Journal of Mathematical Imaging and Vision.

[70]  Laurent D. Cohen,et al.  Auxiliary variables and two-step iterative algorithms in computer vision problems , 2004, Journal of Mathematical Imaging and Vision.

[71]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[72]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[73]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[74]  Pascal Fua,et al.  Model driven edge detection , 1990, Machine Vision and Applications.