Symptoms of complexity in a tourism system

Tourism destinations behave as dynamic evolving complex systems, encompassing numerous factors and activities that are interdependent and whose relationships might be highly nonlinear. Traditional research in this field has looked after a linear approach: variables and relationships are monitored in order to forecast future outcomes with simplified models and to derive implications for management organizations. The limitations of this approach have become apparent in many cases, and several authors claim for a new and different attitude. While complex systems ideas are among the most promising interdisciplinary research themes emerged in the last few decades, very little has been done so far in the field of tourism. This article presents a brief overview of the complexity framework as a means to understand structures, characteristics, and relationships, and explores the implications and contributions of the complexity literature on tourism systems. The objective is to allow the reader to gain a deeper appreciation of this point of view.

[1]  Andrzej Rucinski,et al.  Random graphs , 2006, SODA.

[2]  A. Rutherford The future ain't what it used to be , 2008, Nature.

[3]  Allan M. Williams,et al.  Tourism: Conceptualizations, Institutions, and Issues , 2008 .

[4]  Leigh Tesfatsion,et al.  Handbook of Computational Economics, Volume 2: Agent-Based Computational Economics (Handbook of Computational Economics) , 2006 .

[5]  Charlene O'Hanlon In with the new , 2005, IEEE Control Systems.

[6]  P. Narayan Testing the Unit Root Hypothesis When the Alternative is a Trend Break Stationary Process: An Application to Tourist Arrivals in Fiji , 2005 .

[7]  C. S. Holling Adaptive Environmental Assessment and Management , 2005 .

[8]  Holger Kantz,et al.  Nonlinear Time Series Analysis , 2005 .

[9]  N. Scott,et al.  Tourism Crises and Disasters: Enhancing Understanding of System Effects , 2005 .

[10]  I. Yeoman,et al.  Quantifying the Effects of Tourism Crises: An Application to Scotland , 2005 .

[11]  B. Mckercher Destinations as Products? A Reflection on Butler's Life cycle , 2005 .

[12]  Bruce Heterick,et al.  The future ain't what it used to be , 2004 .

[13]  G. Wall The Competitive Destination: A Sustainable Tourism Perspective , 2004 .

[14]  K. Kearins,et al.  Structural Embeddedness and Community-Building through Collaborative Network Relationships , 2004 .

[15]  N. Johnson,et al.  Evolution Management in a Complex Adaptive System: Engineering the Future , 2004, cond-mat/0409036.

[16]  M. Ulubaşoğlu,et al.  Zipf's law strikes again: The case of tourism , 2004 .

[17]  D. Watts The “New” Science of Networks , 2004 .

[18]  B. Faulkner,et al.  Entrepreneurship, chaos and the tourism area lifecycle. , 2004 .

[19]  L. Amaral,et al.  Complex networks , 2004 .

[20]  J. M. Ottino,et al.  Engineering complex systems , 2004, Nature.

[21]  B. Faulkner,et al.  Chaos and complexity in tourism: In search of a new perspective. , 2003 .

[22]  Mark C. Strazicich,et al.  Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks , 2003, Review of Economics and Statistics.

[23]  G. Crouch,et al.  The Competitive Destination: A Sustainable Tourism Perspective , 2003 .

[24]  G. Luzzi,et al.  AN ECONOMETRIC ESTIMATION OF THE DEMAND FOR TOURISM: THE CASE OF SWITZERLAND , 2003 .

[25]  B. Faulkner,et al.  EMBRACING AND MANAGING CHANGE IN TOURISM , 2003 .

[26]  G. Jobbins,et al.  Governance Capacity and Stakeholder Interactions in the Development and Management of Coastal Tourism: Examples from Morocco and Tunisia , 2003 .

[27]  James Park,et al.  A New Kind of Science , 2003, Artificial Life.

[28]  B. Faulkner,et al.  Events in Indonesia: exploring the limits to formal tourism trends forecasting methods in complex crisis situations. , 2003 .

[29]  Ewen James. Michael,et al.  Tourism Micro-Clusters , 2003 .

[30]  Kathryn Pavlovich,et al.  The evolution and transformation of a tourism destination network: the Waitomo Caves, New Zealand , 2003 .

[31]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[32]  Haiyan Song,et al.  Tourism Demand Modelling And Forecasting: Modern Econometric Approaches , 2003 .

[33]  A. Sen On Unit-Root Tests When the Alternative Is a Trend-Break Stationary Process , 2003 .

[34]  Christian Buchta,et al.  Learning by Simulation -Computer Simulations for Strategic Marketing Decision Support in Tourism , 2003 .

[35]  B. Faulkner Rejuvenating a Maturing Tourist Destination: The Case of the Gold Coast , 2002 .

[36]  M. Macy,et al.  FROM FACTORS TO ACTORS: Computational Sociology and Agent-Based Modeling , 2002 .

[37]  Wolfgang Framke,et al.  The Destination as a Concept: A Discussion of the Business-related Perspective versus the Socio-cultural Approach in Tourism Theory , 2002 .

[38]  Steven C Bankes,et al.  Tools and techniques for developing policies for complex and uncertain systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  E. Bonabeau Agent-based modeling: Methods and techniques for simulating human systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Euel Elliott,et al.  Adaptive agents, intelligence, and emergent human organization: Capturing complexity through agent-based modeling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Newman,et al.  Random Graphs as Models of Networks , 2002, cond-mat/0202208.

[42]  Yochanan Shachmurove,et al.  Chaos Theory And Its Application , 2002 .

[43]  Paul Lynch,et al.  Small tourism business networks and destination development , 2001 .

[44]  J. Sprott Chaos and time-series analysis , 2001 .

[45]  B. Faulkner,et al.  Katherine, washed out one day, back on track the next: a post-mortem of a tourism disaster , 2001 .

[46]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[47]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[48]  Dimitrios Buhalis Marketing the competitive destination of the future. , 2000 .

[49]  L. Amaral,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  F. Recanatini,et al.  Disorganization or self-organization : the emergence of business associations in a transition economy , 1999 .

[51]  Maureen G. Reed,et al.  Collaborative Tourism Planning as Adaptive Experiments in Emergent Tourism Settings , 1999 .

[52]  Bob McKercher,et al.  A chaos approach to tourism , 1999 .

[53]  Roslyn Russell,et al.  Movers and shakers: chaos makers in tourism development , 1999 .

[54]  P. Cilliers,et al.  Complexity and post-modernism: understanding complex systems , 1999 .

[55]  T. Vicsek,et al.  Optimal self-organization , 1999, cond-mat/9904327.

[56]  Paul A. Walker,et al.  The Tourism Futures Simulator: a systems thinking approach , 1998, Environ. Model. Softw..

[57]  Jonathan Rosenhead,et al.  Complexity theory and management practice , 1998 .

[58]  T. Schreiber Interdisciplinary application of nonlinear time series methods , 1998, chao-dyn/9807001.

[59]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[60]  Ralph E. Byers,et al.  PREDICTING CHANGE IN NON-LINEAR SYSTEMS , 1997 .

[61]  R. Stacey Complexity and Creativity in Organizations , 1996 .

[62]  C. Witt,et al.  Forecasting tourism demand: A review of empirical research , 1995 .

[63]  B. Faulkner,et al.  An integrative approach to tourism demand forecasting , 1995 .

[64]  R. Stacey Strategic Management and Organisational Dynamics , 1993 .

[65]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[66]  Steve Bankes,et al.  Exploratory Modeling for Policy Analysis , 1993, Oper. Res..

[67]  Melanie Mitchell,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[68]  R. Fildes Forecasting structural time series models and the kalman filter: Andrew Harvey, 1989, (Cambridge University Press), 554 pp., ISBN 0-521-32196-4 , 1992 .

[69]  D. Andrews,et al.  Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis , 1992 .

[70]  M. Mitchell Waldrop,et al.  Complexity : the emerging science and the edge of order and chaos , 1992 .

[71]  Itamar Procaccia,et al.  Complex or just complicated? , 1988, Nature.

[72]  P. Phillips Testing for a Unit Root in Time Series Regression , 1988 .

[73]  R. Devaney,et al.  Chaos, Making a New Science , 1987 .

[74]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[75]  A. Wolf,et al.  13. Quantifying chaos with Lyapunov exponents , 1986 .

[76]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[77]  R. Butler The concept of a tourist area cycle of evolution: implications for management of resources. , 1980 .

[78]  N. Vanhove Forecasting in tourism. , 1980 .

[79]  W. Fuller,et al.  Distribution of the Estimators for Autoregressive Time Series with a Unit Root , 1979 .

[80]  C. S. Holling Resilience and Stability of Ecological Systems , 1973 .

[81]  P. Anderson More is different. , 1972, Science.

[82]  R. Butler The tourism area life cycle, Volume 2: conceptual and theoretical issues. , 2006 .

[83]  Rick Lagiewski The application of the TALC model: a literature survey , 2006 .

[84]  Julie Dugdale,et al.  The Contribution Of Complexity Theory To The Study Of Socio-Technical Cooperative Systems , 2006 .

[85]  R. Russell Chaos theory and managerial approaches , 2006 .

[86]  Dan Metes Visual , Unit Root and Stationarity Tests and Their Power and Accuracy , 2005 .

[87]  B. Farrell,et al.  RECONCEPTUALIZING TOURISM , 2004 .

[88]  E. Bradley Analysis of time series , 2003 .

[89]  L. Tesfatsion 2 Illustrative ACE Research Areas , 2003 .

[90]  Carlo Novara,et al.  Nonlinear Time Series , 2003 .

[91]  Roslyn Russell,et al.  Turbulence, Chaos and Complexity in tourism systems: a research direction for the new millennium , 2001 .

[92]  Measuring the Role of Tourism in OECD Economies , 2001 .

[93]  S. Poukliakova,et al.  Tourism demand modelling and forecasting: modern econometric approaches , 2001 .

[94]  B. Faulkner "The future ain't what it used to be": Coping with Change, Turbulence and Disasters in Tourism Research and Destination Management , 2000 .

[95]  A. Andrew,et al.  Emergence of Scaling in Random Networks , 1999 .

[96]  Francis Heylighen,et al.  The Science of Self-Organization and Adaptivity , 1999 .

[97]  D. Mileti Disasters by Design: A Reassessment of Natural Hazards in the United States , 1999 .

[98]  Roslyn Russell,et al.  RELIVING THE DESTINATION LIFE CYCLE IN COOLANGATTA: An historical perspective on the rise, decline and rejuvenation of an Australian seaside resort , 1998 .

[99]  Donald G. Saari,et al.  Mathematical Complexity of Simple Economics , 1996 .

[100]  Hans M. Amman,et al.  Handbook of Computational Economics , 1996 .

[101]  R. Lewin,et al.  Complexity: Life at the Edge of Chaos , 1992 .

[102]  Stephen L. J. Smith,et al.  Defining tourism a supply-side view , 1988 .

[103]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[104]  B. Bollobás The evolution of random graphs , 1984 .

[105]  F. Takens Detecting strange attractors in turbulence , 1981 .

[106]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[107]  Istituto centrale di statistica,et al.  Annuario statistico italiano , 1955 .