Topology and dark energy: testing gravity in voids.

Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.

[1]  Roberto Scaramella,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.

[2]  Chameleon fields: awaiting surprises for tests of gravity in space. , 2003, Physical review letters.

[3]  C. Misner,et al.  Fermi Normal Coordinates and Some Basic Concepts in Differential Geometry , 1963 .

[4]  C. D. Rham,et al.  Selftuned massive spin-2 , 2010, 1006.4367.

[5]  C. Burrage,et al.  Strong coupling and bounds on the spin-2 mass in massive gravity. , 2012, Physical review letters.

[6]  L. Hui,et al.  Derrick’s theorem beyond a potential , 2010, 1002.4873.

[7]  A. Barger,et al.  EVIDENCE FOR A ∼300 MEGAPARSEC SCALE UNDER-DENSITY IN THE LOCAL GALAXY DISTRIBUTION , 2013, 1304.2884.

[8]  Mark Wyman Galilean-invariant scalar fields can strengthen gravitational lensing. , 2011, Physical review letters.

[9]  E. Mörtsell,et al.  Spherically symmetric solutions in massive gravity and constraints from galaxies , 2011 .

[10]  R. Rattazzi,et al.  Galileon as a local modification of gravity , 2008, 0811.2197.

[11]  S. Deser,et al.  Acausality of massive gravity. , 2012, Physical review letters.

[12]  D. Weinberg,et al.  A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM , 2012, 1207.2524.

[13]  K. Umetsu,et al.  THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS , 2012, 1210.2446.

[14]  J. Khoury,et al.  Screening long-range forces through local symmetry restoration. , 2010, Physical review letters.

[15]  A. Vainshtein,et al.  To the problem of nonvanishing gravitation mass , 1972 .

[16]  J. Silk,et al.  Local Voids as the Origin of Large-Angle Cosmic Microwave Background Anomalies: The Effect of a Cosmological Constant , 2006, astro-ph/0612347.

[17]  M. Oguri,et al.  Measuring the mass distribution of voids with stacked weak lensing , 2012, 1211.5966.

[18]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[19]  M. Trodden,et al.  Galileons as Wess-Zumino terms , 2012, 1203.3191.

[20]  D. Pirtskhalava,et al.  Vainshtein mechanism in Λ 3 -theories , 2011, 1105.1783.

[21]  H. Buchdahl Non-Linear Lagrangians and Cosmological Theory , 1970 .

[22]  G. Gabadadze,et al.  Generalization of the Fierz-Pauli action , 2010, 1007.0443.

[23]  D. Pirtskhalava,et al.  Cosmic acceleration and the helicity-0 graviton , 2010, 1010.1780.

[24]  B. Jain,et al.  Cosmological Tests of Gravity , 2010, 1004.3294.

[25]  Kurt Hinterbichler Theoretical Aspects of Massive Gravity , 2011, 1105.3735.

[26]  Benjamin D. Wandelt,et al.  PRECISION COSMOGRAPHY WITH STACKED VOIDS , 2011, 1110.0345.

[27]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[28]  M. Blomqvist,et al.  Supernovae as seen by off-center observers in a local void , 2009, 0909.4723.