On the numerical resolution of anisotropic equations with high order differential operators arising in plasma physics
暂无分享,去创建一个
[1] Guido Ciraolo,et al. Penalization modeling of a limiter in the Tokamak edge plasma , 2010, J. Comput. Phys..
[2] B. Rogers,et al. Low-frequency turbulence in a linear magnetized plasma. , 2010, Physical review letters.
[3] Ahmed Ratnani,et al. Anisotropic Diffusion in Toroidal geometries , 2016 .
[4] Olivier Pironneau,et al. Numerical zoom for advection diffusion problems with localized multiscales , 2011 .
[5] Philippe Angot,et al. Asymptotic-preserving methods for an anisotropic model of electrical potential in a tokamak , 2014 .
[6] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[7] Claudia Negulescu,et al. Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time , 2014 .
[8] Federico David Halpern,et al. Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation , 2012 .
[9] Claudia Negulescu,et al. Numerical analysis of an asymptotic-preserving scheme for anisotropic elliptic equations , 2015 .
[10] P. Degond. Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.
[11] Axel Klar. An Asymptotic Preserving Numerical Scheme for Kinetic Equations in the Low Mach Number Limit , 1999 .
[12] Lorenzo Pareschi,et al. Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..
[13] Claudia Negulescu,et al. Existence and uniqueness of the electric potential profile in the edge of tokamak plasmas when constrained by the plasma-wall boundary physics , 2008 .
[14] P. Stangeby. The Plasma Boundary of Magnetic Fusion Devices , 2000 .
[15] Wen-Chyuan Yueh. EIGENVALUES OF SEVERAL TRIDIAGONAL MATRICES , 2005 .
[16] Claudia Negulescu,et al. An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition , 2011, J. Comput. Phys..
[17] Patrick Amestoy,et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..
[18] Fabrice Deluzet,et al. Asymptotic-Preserving methods and multiscale models for plasma physics , 2016, J. Comput. Phys..
[19] Richard Pasquetti,et al. High order approximation of a tokamak edge plasma transport minimal model with Bohm boundary conditions , 2015, J. Comput. Phys..
[20] J. Bucalossi,et al. Near wall plasma simulation using penalization technique with the transport code SolEdge2D-Eirene , 2013 .
[21] A. Klar. An Asymptotic-Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit , 1998 .
[22] Christophe Besse,et al. Efficient Numerical Methods for Strongly Anisotropic Elliptic Equations , 2013, J. Sci. Comput..
[23] Fabio Riva,et al. The GBS code for tokamak scrape-off layer simulations , 2016, J. Comput. Phys..
[24] Fabio Riva,et al. Non-linear simulations of the TCV Scrape-Off Layer , 2017 .
[25] Claudia Negulescu,et al. Numerical study of a nonlinear heat equation for plasma physics , 2011, Int. J. Comput. Math..
[26] Fabrice Deluzet,et al. Numerical study of the plasma tearing instability on the resistive time scale , 2015, J. Comput. Phys..
[27] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[28] Fabrice Deluzet,et al. Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations , 2010, 1008.3405.
[29] Guillaume Latu,et al. Comparison of Numerical Solvers for Anisotropic Diffusion Equations Arising in Plasma Physics , 2015, J. Sci. Comput..
[30] P. B. Snyder,et al. BOUT++: A framework for parallel plasma fluid simulations , 2008, Comput. Phys. Commun..
[31] Fabrice Deluzet,et al. A Two Field Iterated Asymptotic-Preserving Method for Highly Anisotropic Elliptic Equations , 2019, Multiscale Model. Simul..
[32] Guido Ciraolo,et al. The TOKAM3X code for edge turbulence fluid simulations of tokamak plasmas in versatile magnetic geometries , 2016, J. Comput. Phys..
[33] Patrick Amestoy,et al. Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..
[34] Virginie Grandgirard,et al. TOKAM-3D: A 3D fluid code for transport and turbulence in the edge plasma of Tokamaks , 2010, J. Comput. Phys..
[35] Fabrice Deluzet,et al. Iterative Solvers for Elliptic Problems with Arbitrary Anisotropy Strengths , 2018, Multiscale Model. Simul..
[36] Lorenzo Pareschi,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.
[37] Claudia Negulescu,et al. Asymptotic-Preserving scheme for a strongly anisotropic vorticity equation arising in fusion plasma modeling , 2017, Comput. Phys. Commun..
[38] D. Galassi,et al. Flux expansion effect on turbulent transport in 3D global simulations , 2017 .
[39] Fabrice Deluzet,et al. An Asymptotic Preserving Scheme for Strongly Anisotropic Elliptic Problems , 2009, Multiscale Model. Simul..
[40] Giacomo Dimarco,et al. Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..
[41] Jacek Narski,et al. Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction , 2013, Comput. Phys. Commun..