On the numerical resolution of anisotropic equations with high order differential operators arising in plasma physics

Abstract In this paper, numerical schemes are introduced for the efficient resolution of anisotropic equations including high order differential operators. The model problem investigated in this paper, though simplified, is representative of the difficulties encountered in the modeling of Tokamak plasmas. The occurrence of high order differential operators introduces specific difficulties for the design of effective numerical methods. On the one hand, regular discretizations of the problem provide matrices characterized by a condition number that blows up with increasing anisotropy strength. On the other hand, matrices issued from Asymptotic-Preserving methods preserve a condition number bounded with respect to the anisotropy strength, nonetheless it scales very poorly as the mesh is refined. Both alternatives reveal to be inoperative in this specific framework to address the targeted values of anisotropy on refined meshes. We therefore introduce two successful methods offering the advantages of each approach: a condition number unrelated to the anisotropy strength and scaling as favorably as standard discretizations with the mesh refinement.

[1]  Guido Ciraolo,et al.  Penalization modeling of a limiter in the Tokamak edge plasma , 2010, J. Comput. Phys..

[2]  B. Rogers,et al.  Low-frequency turbulence in a linear magnetized plasma. , 2010, Physical review letters.

[3]  Ahmed Ratnani,et al.  Anisotropic Diffusion in Toroidal geometries , 2016 .

[4]  Olivier Pironneau,et al.  Numerical zoom for advection diffusion problems with localized multiscales , 2011 .

[5]  Philippe Angot,et al.  Asymptotic-preserving methods for an anisotropic model of electrical potential in a tokamak , 2014 .

[6]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[7]  Claudia Negulescu,et al.  Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time , 2014 .

[8]  Federico David Halpern,et al.  Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation , 2012 .

[9]  Claudia Negulescu,et al.  Numerical analysis of an asymptotic-preserving scheme for anisotropic elliptic equations , 2015 .

[10]  P. Degond Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.

[11]  Axel Klar An Asymptotic Preserving Numerical Scheme for Kinetic Equations in the Low Mach Number Limit , 1999 .

[12]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[13]  Claudia Negulescu,et al.  Existence and uniqueness of the electric potential profile in the edge of tokamak plasmas when constrained by the plasma-wall boundary physics , 2008 .

[14]  P. Stangeby The Plasma Boundary of Magnetic Fusion Devices , 2000 .

[15]  Wen-Chyuan Yueh EIGENVALUES OF SEVERAL TRIDIAGONAL MATRICES , 2005 .

[16]  Claudia Negulescu,et al.  An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition , 2011, J. Comput. Phys..

[17]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[18]  Fabrice Deluzet,et al.  Asymptotic-Preserving methods and multiscale models for plasma physics , 2016, J. Comput. Phys..

[19]  Richard Pasquetti,et al.  High order approximation of a tokamak edge plasma transport minimal model with Bohm boundary conditions , 2015, J. Comput. Phys..

[20]  J. Bucalossi,et al.  Near wall plasma simulation using penalization technique with the transport code SolEdge2D-Eirene , 2013 .

[21]  A. Klar An Asymptotic-Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit , 1998 .

[22]  Christophe Besse,et al.  Efficient Numerical Methods for Strongly Anisotropic Elliptic Equations , 2013, J. Sci. Comput..

[23]  Fabio Riva,et al.  The GBS code for tokamak scrape-off layer simulations , 2016, J. Comput. Phys..

[24]  Fabio Riva,et al.  Non-linear simulations of the TCV Scrape-Off Layer , 2017 .

[25]  Claudia Negulescu,et al.  Numerical study of a nonlinear heat equation for plasma physics , 2011, Int. J. Comput. Math..

[26]  Fabrice Deluzet,et al.  Numerical study of the plasma tearing instability on the resistive time scale , 2015, J. Comput. Phys..

[27]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[28]  Fabrice Deluzet,et al.  Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations , 2010, 1008.3405.

[29]  Guillaume Latu,et al.  Comparison of Numerical Solvers for Anisotropic Diffusion Equations Arising in Plasma Physics , 2015, J. Sci. Comput..

[30]  P. B. Snyder,et al.  BOUT++: A framework for parallel plasma fluid simulations , 2008, Comput. Phys. Commun..

[31]  Fabrice Deluzet,et al.  A Two Field Iterated Asymptotic-Preserving Method for Highly Anisotropic Elliptic Equations , 2019, Multiscale Model. Simul..

[32]  Guido Ciraolo,et al.  The TOKAM3X code for edge turbulence fluid simulations of tokamak plasmas in versatile magnetic geometries , 2016, J. Comput. Phys..

[33]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[34]  Virginie Grandgirard,et al.  TOKAM-3D: A 3D fluid code for transport and turbulence in the edge plasma of Tokamaks , 2010, J. Comput. Phys..

[35]  Fabrice Deluzet,et al.  Iterative Solvers for Elliptic Problems with Arbitrary Anisotropy Strengths , 2018, Multiscale Model. Simul..

[36]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[37]  Claudia Negulescu,et al.  Asymptotic-Preserving scheme for a strongly anisotropic vorticity equation arising in fusion plasma modeling , 2017, Comput. Phys. Commun..

[38]  D. Galassi,et al.  Flux expansion effect on turbulent transport in 3D global simulations , 2017 .

[39]  Fabrice Deluzet,et al.  An Asymptotic Preserving Scheme for Strongly Anisotropic Elliptic Problems , 2009, Multiscale Model. Simul..

[40]  Giacomo Dimarco,et al.  Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..

[41]  Jacek Narski,et al.  Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction , 2013, Comput. Phys. Commun..