Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions

We study the modeling of nonconvex piecewise-linear functions as mixed-integer programming (MIP) problems. We review several new and existing MIP formulations for continuous piecewise-linear functions with special attention paid to multivariate nonseparable functions. We compare these formulations with respect to their theoretical properties and their relative computational performance. In addition, we study the extension of these formulations to lower semicontinuous piecewise-linear functions.

[1]  Jon Lee,et al.  Polyhedral methods for piecewise-linear functions I: the lambda method , 2001, Discret. Appl. Math..

[2]  Herbert S. Wilf,et al.  Combinatorial Algorithms: An Update , 1987 .

[3]  Ahmet B. Keha A polyhedral study of nonconvex piecewise linear optimization , 2003 .

[4]  Manfred Padberg,et al.  Location, Scheduling, Design and Integer Programming , 2011, J. Oper. Res. Soc..

[5]  Franz Aurenhammer,et al.  Towards compatible triangulations , 2001, Theor. Comput. Sci..

[6]  Ignacio E. Grossmann,et al.  An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms , 2008, Comput. Chem. Eng..

[7]  Robert G. Jeroslow,et al.  Representability in mixed integer programmiing, I: Characterization results , 1987, Discret. Appl. Math..

[8]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[9]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[10]  Thomas L. Magnanti,et al.  Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs , 2007, Oper. Res..

[11]  Pascal Van Hentenryck,et al.  Simulation of Hybrid Circuits in Constraint Logic Programming , 1989, IJCAI.

[12]  Leon S. Lasdon,et al.  Feature Article - Survey of Nonlinear Programming Applications , 1980, Oper. Res..

[13]  Bernd Hamann,et al.  On piecewise linear approximation of quadratic functions. , 2000 .

[14]  Alexander Martin,et al.  Mixed Integer Models for the Stationary Case of Gas Network Optimization , 2006, Math. Program..

[15]  Ignacio E. Grossmann,et al.  Logic-based outer approximation for globally optimal synthesis of process networks , 2005, Comput. Chem. Eng..

[16]  J. Tomlin A Suggested Extension of Special Ordered Sets to Non-Separable Non-Convex Programming Problems* , 1981 .

[17]  Ravi Kannan,et al.  Lattice translates of a polytope and the Frobenius problem , 1992, Comb..

[18]  A. S. Manne,et al.  On the Solution of Discrete Programming Problems , 1956 .

[19]  R. G. Jeroslow,et al.  Experimental Results on the New Techniques for Integer Programming Formulations , 1985 .

[20]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[21]  R. R. Meyer,et al.  Mixed integer minimization models for piecewise-linear functions of a single variable , 1976, Discret. Math..

[22]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[23]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[24]  Thomas L. Magnanti,et al.  Separable Concave Optimization Approximately Equals Piecewise Linear Optimization , 2004, IPCO.

[25]  Ming-Deh A. Huang,et al.  Proof of proposition 1 , 1992 .

[26]  Jesús M. Carnicer,et al.  Piecewise linear interpolants to Lagrange and Hermite convex scattered data , 1996, Numerical Algorithms.

[27]  Michael J. Todd,et al.  Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[28]  G. Dantzig ON THE SIGNIFICANCE OF SOLVING LINEAR PROGRAMMING PROBLEMS WITH SOME INTEGER VARIABLES , 1960 .

[29]  Manfred W. Padberg,et al.  Approximating Separable Nonlinear Functions Via Mixed Zero-One Programs , 1998, Oper. Res. Lett..

[30]  M. Todd Union Jack Triangulations , 1977 .

[31]  K. Taira Proof of Theorem 1.3 , 2004 .

[32]  George L. Nemhauser,et al.  Models for representing piecewise linear cost functions , 2004, Oper. Res. Lett..

[33]  George L. Nemhauser,et al.  A Branch-and-Cut Algorithm Without Binary Variables for Nonconvex Piecewise Linear Optimization , 2006, Oper. Res..

[34]  C. B. García,et al.  Fixed points : algorithms and applications , 1977 .

[35]  Robert G. Jeroslow Representability of functions , 1989, Discret. Appl. Math..

[36]  George L. Nemhauser,et al.  Nonconvex, lower semicontinuous piecewise linear optimization , 2008, Discret. Optim..

[37]  George L. Nemhauser,et al.  Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2008, Math. Program..

[38]  G. Nemhauser,et al.  Integer Programming , 2020 .

[39]  Don Coppersmith,et al.  Parsimonious binary-encoding in integer programming , 2005, Discret. Optim..

[40]  Toshimde Ibaraki Integer programming formulation of combinatorial optimization problems , 1976, Discret. Math..

[41]  Hai Zhao,et al.  A special ordered set approach for optimizing a discontinuous separable piecewise linear function , 2008, Oper. Res. Lett..

[42]  Hanif D. Sherali,et al.  On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-linear functions , 2001, Oper. Res. Lett..

[43]  Thomas L. Magnanti,et al.  A Comparison of Mixed - Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems , 2003, Manag. Sci..

[44]  Ming-Deh A. Huang,et al.  Proof of proposition 2 , 1992 .

[45]  Thomas L. Magnanti,et al.  Models and Methods for Merge - in - Transit Operations , 2003, Transp. Sci..

[46]  J. K. Lowe Modelling with Integer Variables. , 1984 .

[47]  Stephen C. Graves,et al.  A composite algorithm for a concave-cost network flow problem , 1989, Networks.