Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions
暂无分享,去创建一个
[1] Jon Lee,et al. Polyhedral methods for piecewise-linear functions I: the lambda method , 2001, Discret. Appl. Math..
[2] Herbert S. Wilf,et al. Combinatorial Algorithms: An Update , 1987 .
[3] Ahmet B. Keha. A polyhedral study of nonconvex piecewise linear optimization , 2003 .
[4] Manfred Padberg,et al. Location, Scheduling, Design and Integer Programming , 2011, J. Oper. Res. Soc..
[5] Franz Aurenhammer,et al. Towards compatible triangulations , 2001, Theor. Comput. Sci..
[6] Ignacio E. Grossmann,et al. An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms , 2008, Comput. Chem. Eng..
[7] Robert G. Jeroslow,et al. Representability in mixed integer programmiing, I: Characterization results , 1987, Discret. Appl. Math..
[8] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[9] Felix Schlenk,et al. Proof of Theorem 3 , 2005 .
[10] Thomas L. Magnanti,et al. Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs , 2007, Oper. Res..
[11] Pascal Van Hentenryck,et al. Simulation of Hybrid Circuits in Constraint Logic Programming , 1989, IJCAI.
[12] Leon S. Lasdon,et al. Feature Article - Survey of Nonlinear Programming Applications , 1980, Oper. Res..
[13] Bernd Hamann,et al. On piecewise linear approximation of quadratic functions. , 2000 .
[14] Alexander Martin,et al. Mixed Integer Models for the Stationary Case of Gas Network Optimization , 2006, Math. Program..
[15] Ignacio E. Grossmann,et al. Logic-based outer approximation for globally optimal synthesis of process networks , 2005, Comput. Chem. Eng..
[16] J. Tomlin. A Suggested Extension of Special Ordered Sets to Non-Separable Non-Convex Programming Problems* , 1981 .
[17] Ravi Kannan,et al. Lattice translates of a polytope and the Frobenius problem , 1992, Comb..
[18] A. S. Manne,et al. On the Solution of Discrete Programming Problems , 1956 .
[19] R. G. Jeroslow,et al. Experimental Results on the New Techniques for Integer Programming Formulations , 1985 .
[20] Brian W. Kernighan,et al. AMPL: A Modeling Language for Mathematical Programming , 1993 .
[21] R. R. Meyer,et al. Mixed integer minimization models for piecewise-linear functions of a single variable , 1976, Discret. Math..
[22] Nesa L'abbe Wu,et al. Linear programming and extensions , 1981 .
[23] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.
[24] Thomas L. Magnanti,et al. Separable Concave Optimization Approximately Equals Piecewise Linear Optimization , 2004, IPCO.
[25] Ming-Deh A. Huang,et al. Proof of proposition 1 , 1992 .
[26] Jesús M. Carnicer,et al. Piecewise linear interpolants to Lagrange and Hermite convex scattered data , 1996, Numerical Algorithms.
[27] Michael J. Todd,et al. Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[28] G. Dantzig. ON THE SIGNIFICANCE OF SOLVING LINEAR PROGRAMMING PROBLEMS WITH SOME INTEGER VARIABLES , 1960 .
[29] Manfred W. Padberg,et al. Approximating Separable Nonlinear Functions Via Mixed Zero-One Programs , 1998, Oper. Res. Lett..
[30] M. Todd. Union Jack Triangulations , 1977 .
[31] K. Taira. Proof of Theorem 1.3 , 2004 .
[32] George L. Nemhauser,et al. Models for representing piecewise linear cost functions , 2004, Oper. Res. Lett..
[33] George L. Nemhauser,et al. A Branch-and-Cut Algorithm Without Binary Variables for Nonconvex Piecewise Linear Optimization , 2006, Oper. Res..
[34] C. B. García,et al. Fixed points : algorithms and applications , 1977 .
[35] Robert G. Jeroslow. Representability of functions , 1989, Discret. Appl. Math..
[36] George L. Nemhauser,et al. Nonconvex, lower semicontinuous piecewise linear optimization , 2008, Discret. Optim..
[37] George L. Nemhauser,et al. Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2008, Math. Program..
[38] G. Nemhauser,et al. Integer Programming , 2020 .
[39] Don Coppersmith,et al. Parsimonious binary-encoding in integer programming , 2005, Discret. Optim..
[40] Toshimde Ibaraki. Integer programming formulation of combinatorial optimization problems , 1976, Discret. Math..
[41] Hai Zhao,et al. A special ordered set approach for optimizing a discontinuous separable piecewise linear function , 2008, Oper. Res. Lett..
[42] Hanif D. Sherali,et al. On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-linear functions , 2001, Oper. Res. Lett..
[43] Thomas L. Magnanti,et al. A Comparison of Mixed - Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems , 2003, Manag. Sci..
[44] Ming-Deh A. Huang,et al. Proof of proposition 2 , 1992 .
[45] Thomas L. Magnanti,et al. Models and Methods for Merge - in - Transit Operations , 2003, Transp. Sci..
[46] J. K. Lowe. Modelling with Integer Variables. , 1984 .
[47] Stephen C. Graves,et al. A composite algorithm for a concave-cost network flow problem , 1989, Networks.