High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations

In this paper, we construct second-order central schemes for multidimensional Hamilton--Jacobi equations and we show that they are nonoscillatory in the sense of satisfying the maximum principle. Thus, these schemes provide the first examples of nonoscillatory second-order Godunov-type schemes based on global projection operators. Numerical experiments are performed; $L^1$/$L^{\infty}$-errors and convergence rates are calculated. For convex Hamiltonians, numerical evidence confirms that our central schemes converge with second-order rates, when measured in the L1-norm advocated in our recent paper [Numer. Math, to appear]. The standard $L^{\infty}$-norm, however, fails to detect this second-order rate.

[1]  M. Falcone,et al.  Numerical schemes for conservation laws via Hamilton-Jacobi equations , 1995 .

[2]  E. Tadmor,et al.  Third order nonoscillatory central scheme for hyperbolic conservation laws , 1998 .

[3]  Eitan Tadmor,et al.  New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .

[4]  Z. Xin,et al.  Numerical Passage from Systems of Conservation Laws to Hamilton--Jacobi Equations, and Relaxation Schemes , 1998 .

[5]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[6]  Olga Lepsky,et al.  Spectral Viscosity Approximations to Hamilton-Jacobi Solutions , 2000, SIAM J. Numer. Anal..

[7]  Eitan Tadmor,et al.  The convergence rate of approximate solutions for nonlinear scalar conservation laws. Final Report , 1991 .

[8]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[9]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[10]  Centro internazionale matematico estivo. Session,et al.  Viscosity solutions and applications : lectures given at the 2nd session of the Centro internazionale matematico estivo (C.I.M.E.) held in Montecatini Terme, Italy, June 12-20, 1995 , 1997 .

[11]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[12]  S. Osher,et al.  High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws , 1998 .

[13]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[14]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[15]  Panagiotis E. Souganidis,et al.  Finite volume schemes for Hamilton–Jacobi equations , 1999, Numerische Mathematik.

[16]  Tamir Tassa,et al.  The convergence rate of Godunov type schemes , 1994 .

[17]  P. Souganidis,et al.  Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations , 1995 .

[18]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[19]  R. Abgrall Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .

[20]  Yann Brenier,et al.  The discrete one-sided Lipschitz condition for convex scalar conservation laws , 1988 .

[21]  Eitan Tadmor,et al.  Pointwise Error Estimates for Scalar Conservation Laws with Piecewise Smooth Solutions , 1999 .

[22]  Chi-Tien Lin,et al.  $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.

[23]  P. Souganidis Approximation schemes for viscosity solutions of Hamilton-Jacobi equations , 1985 .

[24]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[25]  E. Tadmor Local error estimates for discontinuous solutions of nonlinear hyperbolic equations , 1991 .

[26]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[27]  Tao Tang,et al.  The sharpness of Kuznetsov's O D x L 1 -error estimate for monotone difference schemes , 1995 .