Mechanisms of Drug Resistance in Melanoma.

[1]  T. Graeber,et al.  Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. , 2017, Cancer discovery.

[2]  J. Sosman,et al.  Erratum: Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma (Cell (2016) 165(1) (35–44)(S009286741630215X)(10.1016/j.cell.2016.02.065)) , 2017 .

[3]  Wei Li,et al.  Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice , 2016, Cell.

[4]  Matthew Wongchenko,et al.  Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. , 2016, The Lancet. Oncology.

[5]  T. Graeber,et al.  Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. , 2016, The New England journal of medicine.

[6]  R. Sullivan,et al.  Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma , 2016, Nature Medicine.

[7]  D. Adams,et al.  BRAFV600E Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts , 2016, Cell reports.

[8]  P. Abbe,et al.  Compounds Triggering ER Stress Exert Anti-Melanoma Effects and Overcome BRAF Inhibitor Resistance. , 2016, Cancer cell.

[9]  Crispin J. Miller,et al.  Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation , 2016, Cell.

[10]  G. Mills,et al.  Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. , 2016, The Journal of clinical investigation.

[11]  B. Bastian,et al.  From melanocytes to melanomas , 2016, Nature Reviews Cancer.

[12]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[13]  Nicolai J. Birkbak,et al.  Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade , 2016, Science.

[14]  J. Sosman,et al.  Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma , 2016, Cell.

[15]  K. Flaherty,et al.  Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy , 2016, Cancer cell.

[16]  L. Ferrucci,et al.  sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance , 2016, Nature.

[17]  J. McQuade,et al.  Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. , 2016, Cancer discovery.

[18]  Antoni Ribas,et al.  Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance , 2015, Cell.

[19]  A. Ribas Adaptive Immune Resistance: How Cancer Protects from Immune Attack. , 2015, Cancer discovery.

[20]  T. Gajewski,et al.  Tumor-intrinsic oncogene pathways mediating immune avoidance , 2015, Oncoimmunology.

[21]  Nam Huh,et al.  Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway , 2015, Nature Genetics.

[22]  S. Ariyan,et al.  Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas , 2015, Nature Genetics.

[23]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[24]  M. Mandalà,et al.  The status of PD-L1 and tumor-infiltrating immune cells predict resistance and poor prognosis in BRAFi-treated melanoma patients harboring mutant BRAFV600. , 2015, Annals of oncology : official journal of the European Society for Medical Oncology.

[25]  T. Gajewski,et al.  Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity , 2015, Nature.

[26]  Brian Ruffell,et al.  Macrophages and therapeutic resistance in cancer. , 2015, Cancer cell.

[27]  Erik Sahai,et al.  Intravital Imaging Reveals How BRAF Inhibition Generates Drug-Tolerant Microenvironments with High Integrin β1/FAK Signaling , 2015, Cancer cell.

[28]  V. Sondak,et al.  Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. , 2015, Cancer discovery.

[29]  N. Hacohen,et al.  Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity , 2015, Cell.

[30]  N. Carragher,et al.  Paradox-Breaking RAF Inhibitors that Also Target SRC Are Effective in Drug-Resistant BRAF Mutant Melanoma , 2015, Cancer cell.

[31]  T. Graeber,et al.  Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma , 2014, Nature Communications.

[32]  J. Wolchok,et al.  Genetic basis for clinical response to CTLA-4 blockade in melanoma. , 2014, The New England journal of medicine.

[33]  P. Ascierto,et al.  Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. , 2014, The New England journal of medicine.

[34]  J. Utikal,et al.  Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. , 2014, The New England journal of medicine.

[35]  R. Emerson,et al.  PD-1 blockade induces responses by inhibiting adaptive immune resistance , 2014, Nature.

[36]  Hidde L. Ploegh,et al.  CEACAM1 regulates TIM-3-mediated tolerance and exhaustion , 2014, Nature.

[37]  K. Flaherty,et al.  The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFα. , 2014, Cancer discovery.

[38]  Frank McCormick,et al.  Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond , 2014, Nature Reviews Cancer.

[39]  Michael Hölzel,et al.  Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. , 2014, Cancer discovery.

[40]  Antoni Ribas,et al.  Effects of MAPK and PI3K Pathways on PD-L1 Expression in Melanoma , 2014, Clinical Cancer Research.

[41]  J. Mesirov,et al.  A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. , 2014, Cancer discovery.

[42]  David C. Smith,et al.  Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  D. Esposito,et al.  Dragging ras back in the ring. , 2014, Cancer cell.

[44]  Dirk Schadendorf,et al.  Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. , 2014, The Lancet. Oncology.

[45]  C. Rommel,et al.  PI3K and cancer: lessons, challenges and opportunities , 2014, Nature Reviews Drug Discovery.

[46]  P. Sharma,et al.  PD-L1 Expression in Triple-Negative Breast Cancer , 2014, Cancer Immunology Research.

[47]  Rajiv Narayan,et al.  A melanocyte lineage program confers resistance to MAP kinase pathway inhibition , 2013, Nature.

[48]  Travis J Cohoon,et al.  Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. , 2013, Cancer discovery.

[49]  N. Rosen,et al.  Tumor adaptation and resistance to RAF inhibitors , 2013, Nature Medicine.

[50]  V. Sondak,et al.  The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma , 2013, Nature Reviews Clinical Oncology.

[51]  Jason B. Williams,et al.  Up-Regulation of PD-L1, IDO, and Tregs in the Melanoma Tumor Microenvironment Is Driven by CD8+ T Cells , 2013, Science Translational Medicine.

[52]  C. Horak,et al.  Nivolumab plus ipilimumab in advanced melanoma. , 2013, The New England journal of medicine.

[53]  J. Ferlay,et al.  Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. , 2013, European journal of cancer.

[54]  D. Schadendorf,et al.  A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. , 2013, Cancer discovery.

[55]  K. Flaherty,et al.  Elucidating distinct roles for NF1 in melanomagenesis. , 2013, Cancer discovery.

[56]  Jun S. Song,et al.  BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition , 2013, Proceedings of the National Academy of Sciences.

[57]  L. Chin,et al.  Inhibition of melanoma development in the Nras(Q61K)::Ink4a−/− mouse model by the small molecule BI‐69A11 , 2013, Pigment cell & melanoma research.

[58]  R. Marais,et al.  Effect of SMURF2 Targeting on Susceptibility to MEK Inhibitors in Melanoma , 2012, Journal of the National Cancer Institute.

[59]  S. Chandarlapaty,et al.  Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. , 2012, Cancer cell.

[60]  P. Hwu,et al.  PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible chemokines. , 2012, Cancer research.

[61]  J. Landsberg,et al.  Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation , 2012, Nature.

[62]  A. Ribas,et al.  Cancer therapy: Tumours switch to resist , 2012, Nature.

[63]  A. Hauschild,et al.  Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial , 2012, The Lancet.

[64]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[65]  Boris N. Kholodenko,et al.  Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades , 2012, Front. Physiol..

[66]  J. Utikal,et al.  Improved survival with MEK inhibition in BRAF-mutated melanoma. , 2012, The New England journal of medicine.

[67]  Jane Fridlyand,et al.  Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors , 2012, Nature.

[68]  T. Golub,et al.  Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion , 2012, Nature.

[69]  C. Drake,et al.  Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. , 2012, The New England journal of medicine.

[70]  David C. Smith,et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. , 2012, The New England journal of medicine.

[71]  Dirk Schadendorf,et al.  Improved survival with MEK Inhibition in BRAF-mutated melanoma for the METRIC Study Group , 2012 .

[72]  J. Sosman,et al.  Preexisting MEK1 exon 3 mutations in V600E/KBRAF melanomas do not confer resistance to BRAF inhibitors. , 2012, Cancer discovery.

[73]  Steven A. Rosenberg,et al.  Adoptive immunotherapy for cancer: harnessing the T cell response , 2012, Nature Reviews Immunology.

[74]  Drew M. Pardoll,et al.  The blockade of immune checkpoints in cancer immunotherapy , 2012, Nature Reviews Cancer.

[75]  T. Gilmer,et al.  Combinations of BRAF, MEK, and PI3K/mTOR Inhibitors Overcome Acquired Resistance to the BRAF Inhibitor GSK2118436 Dabrafenib, Mediated by NRAS or MEK Mutations , 2012, Molecular Cancer Therapeutics.

[76]  Yu Shyr,et al.  Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. , 2012, The New England journal of medicine.

[77]  E. Mardis,et al.  Cancer Exome Analysis Reveals a T Cell Dependent Mechanism of Cancer Immunoediting , 2012, Nature.

[78]  B. Taylor,et al.  Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring V600EBRAF , 2012, Oncogene.

[79]  K. Flaherty,et al.  RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. , 2012, The New England journal of medicine.

[80]  George Coukos,et al.  Cancer immunotherapy comes of age , 2011, Nature.

[81]  Tom Misteli,et al.  RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E) , 2011, Nature.

[82]  Nikhil Wagle,et al.  Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[83]  A. Hauschild,et al.  Improved survival with vemurafenib in melanoma with BRAF V600E mutation. , 2011, The New England journal of medicine.

[84]  N. Rosen,et al.  Resistance to BRAF inhibition in melanomas. , 2011, The New England journal of medicine.

[85]  S. Nelson,et al.  Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation , 2010, Nature.

[86]  Damien Kee,et al.  Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. , 2010, Cancer cell.

[87]  Marc Vidal,et al.  COT/MAP3K8 drives resistance to RAF inhibition through MAP kinase pathway reactivation , 2010, Nature.

[88]  D. Schadendorf,et al.  Improved survival with ipilimumab in patients with metastatic melanoma. , 2010, The New England journal of medicine.

[89]  J. Reis-Filho,et al.  Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF , 2010, Cell.

[90]  Jeffrey E Gershenwald,et al.  Final version of 2009 AJCC melanoma staging and classification. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[91]  N. Ibrahim,et al.  Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice , 2009, Oncogene.

[92]  Tim K. Lee,et al.  Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls , 2009, International journal of epidemiology.

[93]  J. Reis-Filho,et al.  Oncogenic Braf induces melanocyte senescence and melanoma in mice. , 2009, Cancer cell.

[94]  R. DePinho,et al.  BRafV600E cooperates with Pten silencing to elicit metastatic melanoma , 2009, Nature Genetics.

[95]  M. Wasik,et al.  Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1) , 2008, Proceedings of the National Academy of Sciences.

[96]  C. Der,et al.  Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer , 2007, Oncogene.

[97]  D. Fisher,et al.  MITF: master regulator of melanocyte development and melanoma oncogene. , 2006, Trends in molecular medicine.

[98]  J. Fridlyand,et al.  Distinct sets of genetic alterations in melanoma. , 2005, The New England journal of medicine.

[99]  B. Weber,et al.  SPRY2 Is an Inhibitor of the Ras/Extracellular Signal-Regulated Kinase Pathway in Melanocytes and Melanoma Cells with Wild-Type BRAF but Not with the V599E Mutant , 2004, Cancer Research.

[100]  D. Barford,et al.  Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF , 2004, Cell.

[101]  L. Chin,et al.  Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo , 2003, Oncogene.

[102]  N. Hayward,et al.  Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. , 2003, Journal of the National Cancer Institute.

[103]  C. Berking,et al.  Function and regulation of melanoma–stromal fibroblast interactions: when seeds meet soil , 2003, Oncogene.

[104]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[105]  R. Schreiber,et al.  IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity , 2001, Nature.

[106]  J. Schlessinger,et al.  Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[107]  D. Whiteman,et al.  The pathogenesis of melanoma induced by ultraviolet radiation. , 1999, The New England journal of medicine.

[108]  B. Gilchrest,et al.  The pathogenesis of melanoma induced by ultraviolet radiation. , 1999, The New England journal of medicine.

[109]  C. Marshall,et al.  Differential Regulation of Raf-1, A-Raf, and B-Raf by Oncogenic Ras and Tyrosine Kinases* , 1997, The Journal of Biological Chemistry.

[110]  F. McCormick,et al.  Signal transduction from multiple Ras effectors. , 1997, Current opinion in genetics & development.

[111]  M. Farrar,et al.  Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization , 1996, Nature.

[112]  P. J. Belshaw,et al.  Oligomerization activates c-Raf-1 through a Ras-dependent mechanism , 1996, Nature.

[113]  L. J. Veer,et al.  N-ras mutations in human cutaneous melanoma from sun-exposed body sites , 1989, Molecular and cellular biology.

[114]  S. Hirohashi,et al.  Molecular cloning and the total nucleotide sequence of the human c-Ha-ras-1 gene activated in a melanoma from a Japanese patient. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[115]  A. Hauschild,et al.  Improved overall survival in melanoma with combined dabrafenib and trametinib. , 2015, The New England journal of medicine.

[116]  Antoni Ribas,et al.  Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. , 2014, Cancer discovery.

[117]  A. McKenna,et al.  The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. , 2014, Cancer discovery.

[118]  L. Larue,et al.  Human relevance of NRAS/BRAF mouse melanoma models. , 2014, European journal of cell biology.

[119]  Amy Young,et al.  Ras signaling and therapies. , 2009, Advances in cancer research.

[120]  P. Mischel,et al.  Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma , 2007, Nature Medicine.

[121]  R. Marais,et al.  Tumor Necrosis Factor-α Blocks Apoptosis in Melanoma Cells when BRAF Signaling Is Inhibited , 2007 .

[122]  P. Meltzer,et al.  High frequency of BRAF mutations in nevi , 2003, Nature Genetics.

[123]  C. Cordon-Cardo,et al.  Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. , 1989, Oncogene.